Some isoperimetric inequalities with respect to monomial weights

被引:6
作者
Alvino, Angelo [1 ]
Brock, Friedemann [2 ]
Chiacchio, Francesco [1 ]
Mercaldo, Anna [1 ]
Posteraro, Maria Rosaria [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Complesso Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[2] Univ Rostock, Inst Math, Ulmenstr 69, D-18057 Rostock, Germany
关键词
Isoperimetric inequality; weighted Cheeger set; eigenvalue problems; SETS;
D O I
10.1051/cocv/2020054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We solve a class of isoperimetric problems on R-+(2) with respect to monomial weights. Let alpha and beta be real numbers such that 0 <= alpha < beta + 1, beta <= 2 alpha. We show that, among all smooth sets Omega in R-+(2) with fixed weighted measure integral integral (Omega) y(beta) dxdy, the weighted perimeter integral (partial derivative Omega) y(alpha) ds achieves its minimum for a smooth set which is symmetric w.r.t. to the y-axis, and is explicitly given. Our results also imply an estimate of a weighted Cheeger constant and a bound for eigenvalues of some nonlinear problems.
引用
收藏
页数:29
相关论文
共 47 条
[1]  
Abreu E, 2019, ARXIV190401441V2
[2]   The isoperimetric problem for a class of non-radial weights and applications [J].
Alvino, A. ;
Brock, F. ;
Chiacchio, F. ;
Mercaldo, A. ;
Posteraro, Mr .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (12) :6831-6871
[3]   On weighted isoperimetric inequalities with non-radial densities [J].
Alvino, A. ;
Brock, F. ;
Chiacchio, F. ;
Mercaldo, A. ;
Posteraro, M. R. .
APPLICABLE ANALYSIS, 2019, 98 (10) :1935-1945
[4]  
Alvino A., 2017, J MATH ANAL APPL, P280
[5]   Weighted isoperimetric inequalities on Rn and applications to rearrangements [J].
Betta, M. Francesca ;
Brock, Friedernann ;
Mercaldo, Anna ;
Posteraro, M. Rosaria .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (04) :466-498
[6]   A weighted isoperimetric inequality and applications to symmetrization [J].
Betta, MF ;
Brock, F ;
Mercaldo, A ;
Posteraro, MR .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 4 (03) :215-240
[7]   Isoperimetric Regions in Rn with Density rp [J].
Boyer, Wyatt ;
Brown, Bryan ;
Chambers, Gregory R. ;
Loving, Alyssa ;
Tammen, Sarah .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2016, 4 (01) :236-265
[8]  
Brezis H, 2011, UNIVERSITEXT, P1
[9]   A Weighted Isoperimetric Inequality in an Orthant [J].
Brock, F. ;
Chiacchio, F. ;
Mercaldo, A. .
POTENTIAL ANALYSIS, 2014, 41 (01) :171-186
[10]   On isoperimetric inequalities with respect to infinite measures [J].
Brock, Friedemann ;
Mercaldo, Anna ;
Posteraro, Maria Rosaria .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (02) :665-690