Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals

被引:22
作者
Bildhauer, M. [1 ]
Fuchs, M. [1 ]
机构
[1] Univ Saarland, Fachbereich Math 6 1, D-66041 Saarbrucken, Germany
关键词
D O I
10.1007/s00229-007-0096-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider local minimizers u:R-n superset of -> R-N of variational integrals I[u] := integral(Omega) F(del u) dx, where F is of anisotropic (p, q)-growth with exponents 1 < p <= q < infinity. If F is in a certain sense decomposable, we show that the dimensionless restriction q <= 2p + 2 together with the local boundedness of u implies local integrability of. u for all exponents t <= p + 2. More precisely, the initial exponents for the integrability of the partial derivatives can be increased by two, at least locally. If n = 2, then we use these facts to prove C-1,C-alpha-regularity of u for any exponents 2 <= p <= q.
引用
收藏
页码:269 / 283
页数:15
相关论文
共 22 条
[1]  
Adams R., 1975, Sobolev Spaces
[2]  
[Anonymous], 1998, GRUNDLEHREN MATH WIS
[3]  
Bildhauer M, 2007, COMMENT MATH UNIV CA, V48, P321
[4]   A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids [J].
Bildhauer, M ;
Fuchs, M ;
Zhong, X .
MANUSCRIPTA MATHEMATICA, 2005, 116 (02) :135-156
[5]  
Bildhauer M, 2002, ASYMPTOTIC ANAL, V32, P293
[6]  
BILDHAUER M, 2007, IN PRESS ALGEBRA ANA
[7]  
Bildhauer M., 2003, LECT NOTES MATH, V1818
[8]  
BILDHAUER M, 2002, INT MATH SERIES, V1, P49
[9]   HOLDER CONTINUITY OF THE SOLUTIONS OF SOME NON-LINEAR ELLIPTIC-SYSTEMS [J].
CAMPANATO, S .
ADVANCES IN MATHEMATICS, 1983, 48 (01) :16-43
[10]   Differentiability for bounded minimizers of some anisotropic integrals [J].
Canale, A ;
D'Ottavio, A ;
Leonetti, F ;
Longobardi, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 253 (02) :640-650