Using long short term memory and convolutional neural networks for driver drowsiness detection

被引:44
|
作者
Quddus, Azhar [1 ]
Zandi, Ali Shahidi [2 ]
Prest, Laura [2 ]
Comeau, Felix J. E. [2 ]
机构
[1] Au Zone Technol Inc, Calgary, AB, Canada
[2] Alcohol Countermeasure Syst Corp ACS, 60 Int Blvd, Toronto, ON, Canada
来源
ACCIDENT ANALYSIS AND PREVENTION | 2021年 / 156卷
关键词
Driver drowsiness; Fatigue; Long short term memory; LSTM; Convolutional LSTM; Eye detection; Electroencephalogram (EEG); Non-invasive; Random forest (RF); Support vector machine (SVM); FATIGUE; PERFORMANCE; METRICS; SYSTEM;
D O I
10.1016/j.aap.2021.106107
中图分类号
TB18 [人体工程学];
学科分类号
1201 ;
摘要
Fatigue negatively affects the safety and performance of drivers on the road. In fact, drowsiness and fatigue are the cause of a substantial number of motor vehicle accidents. Drowsiness among the drivers can be detected using variety of modalities, including electroencephalogram (EEG), eye movement, and vehicle driving dynamics. Among these EEG is highly accurate but very intrusive and cumbersome. On the other hand, vehicle driving dynamics are very easy to acquire but accuracy is not very high. Eye movement based approach is very attractive in terms of balance between these two extremes. However, eye movement based techniques normally require an eye tracking device which consists of high speed camera with sophisticated algorithm to extract eye movement related parameters such as blinking, eye closure, saccades, fixation etc. This makes eye tracking based drowsiness detection difficult to implement as a practical system, especially on an embedded platform. In this paper, authors propose to use eye images from camera directly without the need for expensive eye-tracking system. Here, eye related movements are captured by Recurrent Neural Network (RNN) to detect the drowsiness. Long Short Term Memory (LSTM) is a class of RNN which has several advantages over vanilla RNNs. In this work an array of LSTM cells are utilized to model the eye movements. Two types of LSTMs were employed: 1-D LSTM (R-LSTM) which is used as baseline and the convolutional LSTM (C-LSTM) which facilitates using 2-D images directly. Patches of size 48 x 48 around each eye were extracted from 38 subjects, participating in a simulated driving experiment. The state of vigilance among the subjects were independently assessed by power spectral analysis of multichannel electroencephalogram (EEG) signals, recorded simultaneously, and binary labels of alert and drowsy (baseline) were generated. Results show high efficacy of the proposed system. R-LSTM based approach resulted in accuracy around 82 % and C-LSTM based approach resulted in accuracy in the range of 95%-97%. Comparison is also provided with a recently published eye-tracking based approach, showing the proposed LSTM technique outperform with a wide margin.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Biosignals Monitoring for Driver Drowsiness Detection Using Deep Neural Networks
    Alguindigue, Jose
    Singh, Amandeep
    Narayan, Apurva
    Samuel, Siby
    IEEE ACCESS, 2024, 12 : 93075 - 93086
  • [32] Sleep Stage Classification using Convolutional Neural Networks and Bidirectional Long Short-Term Memory
    Yulita, Intan Nurma
    Fanany, Mohamad Ivan
    Arymurthy, Aniati Murni
    2017 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2017, : 303 - 307
  • [33] EOG-based Drowsiness Detection Using Convolutional Neural Networks
    Zhu, Xuemin
    Zheng, Wei-Long
    Lu, Bao-Liang
    Chen, Xiaoping
    Chen, Shanguang
    Wang, Chunhui
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 128 - 134
  • [34] Research on bridge structural damage detection based on convolutional and long short-term memory neural networks
    Yang, Jianxi
    Zhang, Likai
    Li, Ren
    He, Yingying
    Jiang, Shixin
    Zou, Junzhi
    Journal of Railway Science and Engineering, 2020, 17 (08) : 1893 - 1902
  • [35] Long Short-Term Memory and Convolutional Neural Networks for Active Noise Control
    Park, Samuel
    Patterson, Eric
    Baum, Carl
    2019 5TH INTERNATIONAL CONFERENCE ON FRONTIERS OF SIGNAL PROCESSING (ICFSP 2019), 2019, : 121 - 125
  • [36] Convolutional long short term memory deep neural networks for image sequence prediction
    Balderas, David
    Ponce, Pedro
    Molina, Arturo
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 122 : 152 - 162
  • [37] CONVOLUTIONAL, LONG SHORT-TERM MEMORY, FULLY CONNECTED DEEP NEURAL NETWORKS
    Sainath, Tara N.
    Vinyals, Oriol
    Senior, Andrew
    Sak, Hasim
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4580 - 4584
  • [38] Online Driver Distraction Detection Using Long Short-Term Memory
    Woellmer, Martin
    Blaschke, Christoph
    Schindl, Thomas
    Schuller, Bjoern
    Faerber, Berthold
    Mayer, Stefan
    Trefflich, Benjamin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011, 12 (02) : 574 - 582
  • [39] Automatic Pitch Accent Detection Using Long Short-Term Memory Neural Networks
    Wu, Yizhi
    Li, Sha
    Li, Hongyan
    2019 INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS (SPSS 2019), 2019, : 41 - 45
  • [40] Intrusion Detection Using Multilayer Perceptron and Neural Networks with Long Short-Term Memory
    Borisenko, B. B.
    Erokhin, S. D.
    Fadeev, A. S.
    Martishin, I. D.
    2021 SYSTEMS OF SIGNAL SYNCHRONIZATION, GENERATING AND PROCESSING IN TELECOMMUNICATIONS (SYNCHROINFO), 2021,