Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range

被引:25
作者
Kcam, Maria Claudia Villegas [1 ]
Tsong, Annette J. [1 ]
Chappell, James [1 ,2 ]
机构
[1] Rice Univ, Dept Biosci, 6100 Main St,MS 140, Houston, TX 77005 USA
[2] Rice Univ, Dept Bioengn, 6100 Main St,MS 142, Houston, TX 77005 USA
关键词
POLYMERASE ALPHA-SUBUNIT; COLI RNA-POLYMERASE; TRANSCRIPTIONAL ACTIVATION; GENE-EXPRESSION; OMEGA SUBUNIT; CIRCUITS; KNOCKOUT; REPRESSION; VARIANTS; SCREENS;
D O I
10.1093/nar/gkab211
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas activator (CRISPRa) systems that selectively turn on transcription of a target gene are a potentially transformative technology for programming cellular function. While in eukaryotes versatile CRISPRa systems exist, in bacteria these systems suffer from a limited ability to activate different genes due to strict distance-dependent requirements of functional target binding sites, and require greater customization to optimize performance in different genetic and cellular contexts. To address this, we apply a rational protein engineering approach to create a new CRISPRa platform that is highly modular to allow for easy customization and has increased targeting flexibility through harnessing engineered Cas proteins. We first demonstrate that transcription activation domains can be recruited by CRISPR-Cas through noncovalent protein-protein interactions, which allows each component to be encoded on separate and easily interchangeable plasmid elements. We then exploit this modularity to rapidly screen a library of different activation domains, creating new systems with distinct regulatory properties. Furthermore, we demonstrate that by harnessing a library of circularly permuted Cas proteins, we can create CRISPRa systems that have different target binding site requirements, which together, allow for expanded target range.
引用
收藏
页码:4793 / 4802
页数:10
相关论文
共 72 条
[1]   A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response [J].
Adamson, Britt ;
Norman, Thomas M. ;
Jost, Marco ;
Cho, Min Y. ;
Nunez, James K. ;
Chen, Yuwen ;
Villalta, Jacqueline E. ;
Gilbert, Luke A. ;
Horlbeck, Max A. ;
Hein, Marco Y. ;
Pak, Ryan A. ;
Gray, Andrew N. ;
Gross, Carol A. ;
Dixit, Atray ;
Parnas, Oren ;
Regev, Aviv ;
Weissman, Jonathan S. .
CELL, 2016, 167 (07) :1867-+
[2]   The CRISPR tool kit for genome editing and beyond [J].
Adli, Mazhar .
NATURE COMMUNICATIONS, 2018, 9
[3]  
Ameruoso Andrea, 2019, Current Opinion in Systems Biology, V14, P32, DOI 10.1016/j.coisb.2019.02.005
[4]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[5]   Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system [J].
Bikard, David ;
Jiang, Wenyan ;
Samai, Poulami ;
Hochschild, Ann ;
Zhang, Feng ;
Marraffini, Luciano A. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7429-7437
[6]   Dual gene activation and knockout screen reveals directional dependencies in genetic networks [J].
Boettcher, Michael ;
Tian, Ruilin ;
Blau, James A. ;
Markegard, Evan ;
Wagner, Ryan T. ;
Wu, David ;
Mo, Xiulei ;
Biton, Anne ;
Zaitlen, Noah ;
Fu, Haian ;
McCormick, Frank ;
Kampmann, Martin ;
McManus, Michael T. .
NATURE BIOTECHNOLOGY, 2018, 36 (02) :170-+
[7]   Computational design of small transcription activating RNAs for versatile and dynamic gene regulation [J].
Chappell, James ;
Westbrook, Alexandra ;
Verosloff, Matthew ;
Lucks, Julius B. .
NATURE COMMUNICATIONS, 2017, 8
[8]   Creating small transcription activating RNAs [J].
Chappell, James ;
Takahashi, Melissa K. ;
Lucks, Julius B. .
NATURE CHEMICAL BIOLOGY, 2015, 11 (03) :214-U165
[9]  
Chavez A, 2016, NAT METHODS, V13, P563, DOI [10.1038/nmeth.3871, 10.1038/NMETH.3871]
[10]  
Chavez A, 2015, NAT METHODS, V12, P326, DOI [10.1038/nmeth.3312, 10.1038/NMETH.3312]