Power Allocation Algorithms for Stable Successive Interference Cancellation in Millimeter Wave NOMA Systems

被引:17
作者
Zhang, Yu [1 ,2 ]
Zhao, Xiongwen [1 ,2 ]
Geng, Suiyan [1 ,2 ]
Zhou, Zhenyu [1 ,2 ]
Qin, Peng [1 ,2 ]
Zhang, Lei [3 ]
Yang, Liuqing [4 ]
机构
[1] North China Elect Power Univ, Sch Elect & Elect Engn, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Hebei Key Lab Power Internet Things Technol, Baoding 071003, Hebei, Peoples R China
[3] State Grid Corp China, Shandong Elect Power Res Inst, Jinan 250003, Peoples R China
[4] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
关键词
Array signal processing; NOMA; Resource management; Radio frequency; Downlink; Silicon carbide; Decoding; Millimeter wave NOMA; power allocation; SIC-stability; achievable sum rate; energy efficiency; NONORTHOGONAL MULTIPLE-ACCESS; MASSIVE MIMO; 5G; SPECTRUM;
D O I
10.1109/TVT.2021.3077270
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we investigate power allocation algorithms in a downlink millimeter wave non-orthogonal multiple access (mmWave-NOMA) system, which consists of one base station (BS) and a group of two-user clusters. Specifically, two optimization problems are formulated to maximize the achievable sum rate (ASR) and energy efficiency (EE), respectively, while satisfying the individual quality of service (QoS) constraints. To ensure the stability of successive interference cancellation (SIC-stability), we specially add the power order constraints, which are often neglected in existing works. By dividing each formulated problem into more tractable inter-cluster and intra-cluster sub-problems, and deriving the corresponding solutions, we propose the ASR maximization based power allocation (ASRMax-PA) and EE maximization based power allocation (EEMax-PA) algorithms. Numerical results show that the proposed ASRMax-PA (EEMax-PA) algorithm is much better than the state-of-the-art schemes in term of ASR (EE), while yields quite good EE (ASR) performance simultaneously. Moreover, both the two proposed algorithms can ensure SIC-stability, which is shown to have a significant impact on the NOMA system performance.
引用
收藏
页码:5833 / 5847
页数:15
相关论文
共 42 条
[1]  
Boyd S., 2014, Convex Optim
[2]  
Boyd S., 2003, Notes for EE393o Stanford University, P1
[3]   Pattern Division Multiple Access-A Novel Nonorthogonal Multiple Access for Fifth-Generation Radio Networks [J].
Chen, Shanzhi ;
Ren, Bin ;
Gao, Qiubin ;
Kang, Shaoli ;
Sun, Shaohui ;
Niu, Kai .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (04) :3185-3196
[4]   Optimal User Scheduling and Power Allocation for Millimeter Wave NOMA Systems [J].
Cui, Jingjing ;
Liu, Yuanwei ;
Ding, Zhiguo ;
Fan, Pingzhi ;
Nallanathan, Arumugam .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (03) :1502-1517
[5]   Hybrid Precoding-Based Millimeter-Wave Massive MIMO-NOMA With Simultaneous Wireless Information and Power Transfer [J].
Dai, Linglong ;
Wang, Bichai ;
Peng, Mugen ;
Chen, Shanzhi .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (01) :131-141
[6]   A Survey of Non-Orthogonal Multiple Access for 5G [J].
Dai, Linglong ;
Wang, Bichai ;
Ding, Zhiguo ;
Wang, Zhaocheng ;
Chen, Sheng ;
Hanzo, Lajos .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2018, 20 (03) :2294-2323
[7]   Random Beamforming in Millimeter-Wave NOMA Networks [J].
Ding, Zhiguo ;
Fan, Pingzhi ;
Poor, H. Vincent .
IEEE ACCESS, 2017, 5 :7667-7681
[8]   On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users [J].
Ding, Zhiguo ;
Yang, Zheng ;
Fan, Pingzhi ;
Poor, H. Vincent .
IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (12) :1501-1505
[9]  
Dinkelbach W, 1967, Management science, V13, P492, DOI [242488, DOI 10.1287/MNSC.13.7.492]
[10]   Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays [J].
Gao, Xinyu ;
Dai, Linglong ;
Han, Shuangfeng ;
I, Chih-Lin ;
Heath, Robert W., Jr. .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2016, 34 (04) :998-1009