Higher-order Carmichael numbers

被引:7
作者
Howe, EW [1 ]
机构
[1] Ctr Commun Res, San Diego, CA 92121 USA
关键词
Carmichael number; pseudoprime; etale algebra;
D O I
10.1090/S0025-5718-00-01225-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a Carmichael number of order m to be a composite integer n such that nth-pou er raising defines an endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdos for the usual Carmichael numbers) that indicates that for every m there should be infinitely many Carmichael numbers of order m. The argument suggests a method for finding examples of higher-order Carmichael numbers; we use the method to provide examples of Carmichael numbers of order 2.
引用
收藏
页码:1711 / 1719
页数:9
相关论文
共 26 条
[1]   STRONG PRIMALITY TESTS THAT ARE NOT SUFFICIENT [J].
ADAMS, W ;
SHANKS, D .
MATHEMATICS OF COMPUTATION, 1982, 39 (159) :255-300
[2]  
ADAMS WW, 1987, MATH COMPUT, V48, P1, DOI 10.1090/S0025-5718-1987-0866094-6
[3]   THERE ARE INFINITELY MANY CARMICHAEL NUMBERS [J].
ALFORD, WR ;
GRANVILLE, A ;
POMERANCE, C .
ANNALS OF MATHEMATICS, 1994, 139 (03) :703-722
[4]  
BAILLIE R, 1980, MATH COMPUT, V35, P1391, DOI 10.1090/S0025-5718-1980-0583518-6
[5]  
DIPORTO A, 1990, FIBONACCI QUART, V28, P347
[6]  
DIPORTO A, 1992, FIBONACCI QUART, V30, P339
[7]  
Erdos P., 1956, Publ. Math. Debrecen, V4, P201, DOI DOI 10.5486/PMD.1956.4.3-4.16
[8]  
GRANTHAM J, IN PRESS MATH COMP
[9]  
GURAK S, 1989, THEORIE NOMBRES, P330
[10]   On Carmichael polynomials [J].
Hsu, CN .
JOURNAL OF NUMBER THEORY, 1998, 71 (02) :257-274