Higher-order Carmichael numbers

被引:7
作者
Howe, EW [1 ]
机构
[1] Ctr Commun Res, San Diego, CA 92121 USA
关键词
Carmichael number; pseudoprime; etale algebra;
D O I
10.1090/S0025-5718-00-01225-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a Carmichael number of order m to be a composite integer n such that nth-pou er raising defines an endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdos for the usual Carmichael numbers) that indicates that for every m there should be infinitely many Carmichael numbers of order m. The argument suggests a method for finding examples of higher-order Carmichael numbers; we use the method to provide examples of Carmichael numbers of order 2.
引用
收藏
页码:1711 / 1719
页数:9
相关论文
共 26 条