The Balian-Low theorem and noncommutative tori

被引:5
作者
Luef, Franz [1 ]
机构
[1] NTNU Trondheim, Dept Math Sci, N-7041 Trondheim, Norway
关键词
Gabor frames; Noncommutative tori; Gauge connections; C-STAR-ALGEBRAS; SPACE;
D O I
10.1016/j.exmath.2018.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We point out a link between the theorem of Balian and Low on the non-existence of well-localized Gabor-Riesz bases and a constant curvature connection on projective modules over noncommutative tori. (C) 2018 Elsevier GmbH. All rights reserved.
引用
收藏
页码:221 / 227
页数:7
相关论文
共 24 条
[1]  
Ascensi G, 2014, T AM MATH SOC, V366, P3865
[2]  
BALIAN R, 1981, CR ACAD SCI II, V292, P1357
[3]   HEISENBERG PROOF OF THE BALIAN LOW THEOREM [J].
BATTLE, G .
LETTERS IN MATHEMATICAL PHYSICS, 1988, 15 (02) :175-177
[4]  
Benedetto J., 1995, J. Fourier Anal. Appl., V1, P355, DOI 10.1007/s00041-001-4016-5
[5]  
CONNES A, 1980, CR ACAD SCI A MATH, V290, P599
[6]   Sigma-Model Solitons on Noncommutative Spaces [J].
Dabrowski, Ludwik ;
Landi, Giovanni ;
Luef, Franz .
LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (12) :1663-1688
[7]  
Dai X.-R., 2016, Memoirs of the AMS, V244
[8]  
Gabor D, 1946, J. Inst. Electr. Eng. (London), V93, P429, DOI [10.1049/JI-3-2.1946.0074, DOI 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074]
[9]  
Gautam SZ, 2008, MATH RES LETT, V15, P471
[10]   The Balian-Low theorem for symplectic lattices in higher dimensions [J].
Gröchenig, K ;
Han, DG ;
Heil, C ;
Kutyniok, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (02) :169-176