Reduced Thermal Conductivity in Nanoengineered Rough Ge and GaAs Nanowires

被引:105
作者
Martin, Pierre N. [1 ,2 ]
Aksamija, Zlatan [1 ,2 ]
Pop, Eric [1 ,2 ,3 ]
Ravaioli, Umberto [1 ,2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Technol & Sci, Urbana, IL 61801 USA
[3] Univ Illinois, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
关键词
Nanowire; roughness; semiconductor; thermal; thermoelectricity; THERMOELECTRIC-MATERIALS; SILICON; PERFORMANCE; GERMANIUM; FIGURE; MODEL; SI;
D O I
10.1021/nl902720v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We model and compare the thermal conductivity of rough semiconductor nanowires (NWs) of Si, Ge, and GaAs for thermoelectric devices. On the basis of full phonon dispersion relations, the effect of NW surface roughness on thermal conductivity is derived from perturbation theory and appears as an efficient way to scatter phonons in Si, Ge, and GaAs NWs with diameter D < 200 nm. For small diameters and large root-mean-square roughness Delta, thermal conductivity is limited by surface asperities and varies quadratically as (D/Delta)(2). At room temperature, our model previously agreed with experimental observations of thermal conductivity down to 2 W m(-1) K-1 in rough 56 nm Si NWs with Delta = 3 nm. In comparison to Si, we predict here remarkably low thermal conductivity in Ge and GaAs NWs of 0.1 and 0.4 W m(-1) K-1, respectively, at similar roughness and diameter.
引用
收藏
页码:1120 / 1124
页数:5
相关论文
共 27 条
[1]   Energy conservation in collisional broadening [J].
Aksamija, Z. ;
Ravaioli, U. .
SISPAD 2007: SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2007, 2007, :73-76
[2]   Thermal conductivity of germanium crystals with different isotopic compositions [J].
AsenPalmer, M ;
Bartkowski, K ;
Gmelin, E ;
Cardona, M ;
Zhernov, AP ;
Inyushkin, AV ;
Taldenkov, A ;
Ozhogin, VI ;
Itoh, KM ;
Haller, EE .
PHYSICAL REVIEW B, 1997, 56 (15) :9431-9447
[3]   Quantitative estimate of phonon scattering rates in different forms of diamond [J].
Barman, S ;
Srivastava, GP .
PHYSICAL REVIEW B, 2006, 73 (07)
[4]   Theory of thermoelectric power factor in quantum well and quantum wire superlattices [J].
Broido, DA ;
Reinecke, TL .
PHYSICAL REVIEW B, 2001, 64 (04)
[5]  
Chowdhury I, 2009, NAT NANOTECHNOL, V4, P235, DOI [10.1038/nnano.2008.417, 10.1038/NNANO.2008.417]
[6]   Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires [J].
Dames, C ;
Chen, G .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (02) :682-693
[7]   Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K [J].
Fon, W ;
Schwab, KC ;
Worlock, JM ;
Roukes, ML .
PHYSICAL REVIEW B, 2002, 66 (04) :1-5
[8]   ACCURATE NUMERICAL METHOD FOR CALCULATING FREQUENCY-DISTRIBUTION FUNCTIONS IN SOLIDS [J].
GILAT, G ;
RAUBENHEIMER, LJ .
PHYSICAL REVIEW, 1966, 144 (02) :390-+
[9]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[10]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5