Structural, Kinetic, and Docking Studies of Artificial imine Reductases Based on Biotin-Streptavidin Technology: An Induced Lock-and-Key Hypothesis

被引:63
作者
Munoz Robles, Victor [1 ]
Duerrenberger, Marc [2 ]
Heinisch, Tillmann [3 ]
Lledos, Agusti [1 ]
Schirmer, Tilman [3 ]
Ward, Thomas R. [2 ]
Marechal, Jean-Didier [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Quim, E-08193 Barcelona, Spain
[2] Univ Basel, CH-4056 Basel, Switzerland
[3] Univ Basel, Biozenbtrum, CH-4056 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
PROTEIN-LIGAND DOCKING; HYDROGENATION; METALLOENZYMES; COMPLEXES; DESIGN; CATALYSTS;
D O I
10.1021/ja508258t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An artificial imine reductase results upon incorporation of a biotinylated Cp*Ir moiety (Cp* = C5Me5-) within homotetrameric streptavidin (Sav) (referred to as Cp*Ir(Biot-p-L)Cl] ? Sav). Mutation of S112 reveals a marked effect of the Ir/streptavidin ratio on both the saturation kinetics as well as the enantioselectivity for the production of salsolidine. For [Cp*Ir(Biot-p-L)Cl] ? S112A Sav, both the reaction rate and the selectivity (up to 96% ee (R)-salsolidine, k(cat) 144 min1 vs [Ir], K-M 65370 mM) decrease upon fully saturating all biotin binding sites (the ee varying between 96% ee and 45% ee R). In contrast, for [Cp*Ir(Biot-p-L)Cl] ? S112K Sav, both the rate and the selectivity remain nearly constant upon varying the Ir/streptavidin ratio [up to 78% ee (S)-salsolidine, kcat 2.6 min1, K-M 95 mM]. X-ray analysis complemented with docking studies highlight a marked preference of the S112A and S112K Sav mutants for the SIr and RIr enantiomeric forms of the cofactor, respectively. Combining both docking and saturation kinetic studies led to the formulation of an enantioselection mechanism relying on an induced lock-and-key hypothesis: the host protein dictates the configuration of the biotinylated Ir-cofactor which, in turn, by and large determines the enantioselectivity of the imine reductase.
引用
收藏
页码:15676 / 15683
页数:8
相关论文
共 33 条
[1]   Computational approaches to asymmetric synthesis [J].
Balcells, David ;
Maseras, Feliu .
NEW JOURNAL OF CHEMISTRY, 2007, 31 (03) :333-343
[2]   DNA-based asymmetric catalysis [J].
Boersma, Arnold J. ;
Megens, Rik P. ;
Feringa, Ben L. ;
Roelfes, Gerard .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) :2083-2092
[3]  
Chase F., 2002, CURR OPIN STRUC BIOL, V12, P431
[4]   X-ray structure and designed evolution of an artificial transfer hydrogenase [J].
Creus, Marc ;
Pordea, Anca ;
Rossel, Thibaud ;
Sardo, Alessia ;
Letondor, Christophe ;
Ivanova, Anita ;
Le Trong, Isolde ;
Stenkamp, Ronald E. ;
Ward, Thomas R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (08) :1400-1404
[5]   Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines [J].
Duerrenberger, Marc ;
Heinisch, Tillmann ;
Wilson, Yvonne M. ;
Rossel, Thibaud ;
Nogueira, Elisa ;
Knoerr, Livia ;
Mutschler, Annette ;
Kersten, Karoline ;
Zimbron, Malcolm Jeremy ;
Pierron, Julien ;
Schirmer, Tilman ;
Ward, Thomas R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (13) :3026-3029
[6]   Allylic Amination by a DNA-Diene-Iridium(I) Hybrid Catalyst [J].
Fournier, Pierre ;
Fiammengo, Roberto ;
Jaeschke, Anders .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (24) :4426-4429
[7]  
Haldane J. B. S., 1930, ENZYMES
[8]   Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C-H Activation [J].
Hyster, Todd K. ;
Knoerr, Livia ;
Ward, Thomas R. ;
Rovis, Tomislav .
SCIENCE, 2012, 338 (6106) :500-503
[9]  
Jing Q., 2009, TOP ORGANOMETAL CHEM, P45
[10]   Stereoselective Hydrogenation of Olefins Using Rhodium-Substituted Carbonic Anhydrase-A New Reductase [J].
Jing, Qing ;
Okrasa, Krzysztof ;
Kazlauskas, Romas J. .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (06) :1370-1376