Strictly singular and disjointly strictly singular inclusions

被引:0
作者
Semenov, E. M.
Hernandez, F. L.
机构
[1] Voronezh State Univ, Voronezh 394006, Russia
[2] Univ Complutense, E-28040 Madrid, Spain
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562407020251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Strictly Singular (SS) and Disjointly Strictly Singular (DSS) r.i. space inclusions in a Banach Space are studied. The study results show that the for a pair of r.i. spaces with one of the spaces being separable, the inclusions are SS, and the inclusions are DSS and the norms of the inclusions are not equivalent. The inclusion of Oelicz space is not SS if the infinite limit of an inferior positive convex function is greater than 4 and the supreme positive convex function is less than 4. The results also show that the inclusions is SS if and only if the zero limit of the concave increasing function is equal to zero. Any subspace on which the norms of equivalent Orlicz spaces are defined, the space is uncomplemented.
引用
收藏
页码:277 / 278
页数:2
相关论文
共 10 条
  • [1] ASTASHKIN SV, 1999, MAT ZAMETKI, V65, P483
  • [2] Del Amo AG, 2000, J LOND MATH SOC, V62, P239
  • [3] ON LAMBDA-P-COMPLEMENTED COPIES IN ORLICZ SPACES .2.
    HERNANDEZ, FI
    RODRIGUEZSALINAS, B
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1989, 68 (01) : 27 - 55
  • [4] Strictly singular embeddings between rearrangement invariant spaces
    Hernandez, FL
    Novikov, SY
    Semenov, EM
    [J]. POSITIVITY, 2003, 7 (1-2) : 119 - 124
  • [5] Krein, 1982, INTERPOLATION LINEAR
  • [6] Lindenstrauss J., 1979, ERGEB MATH GRENZGEB, V97
  • [7] Lindenstrauss J., 1977, CLASSICAL BANACH SPA, VI
  • [8] MILMAN VD, 1970, TEOR FUNKTSII FUNKTS, V10, P15
  • [9] NOVIKOV SY, 1997, MAT ZAMETKI, V62, P549
  • [10] Rudin W., 1973, FUNCTIONAL ANAL