A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries

被引:51
作者
Wang, Yiyun [1 ]
Wang, Xinlei [1 ]
Tang, Jian [1 ,2 ]
Tang, Weihua [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Peoples R China
[2] Xiamen Univ, Coll Mat, Inst Flexible Elect IFE, Future Technol, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-ENERGY; CATHODE; TEMPERATURE; CHALLENGES; ANODE;
D O I
10.1039/d2ta03655j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Featuring low cost, safety and environmental friendliness, aqueous zinc-ion batteries (AZIBs) have emerged as a promising grid-scale energy storage solution; however, they are facing challenges especially because of their moderate capacity and short cycling Life. We herein develop a quinoxalinophenazinedione covalent triazine framework (CTF-TTPQ) knotted by triazine nodes as an organic cathode to boost the energy storage capacity and cycle stability of AZIBs. Experimental and ex situ characterization studies together with DFT calculations reveal the h(+)/Zn2+ co-insertion mechanism and the simultaneous bonding of Zn2+ with high-density carbonyl and imine redox active sites. TTPQ exhibits superior electrochemical performance to most reported organic cathodes for AZIBs. Benefiting from the multiple electroactive C=O and C=N redox sites for ion intercalation/deintercalation, TTPQ exhibits high energy density (404 mA h g(-1) x 1.07 V = 432.28 W h kg(-1)) and excellent cycling stability (>94% capacity retention after 250 cycles at 0.5 A g(-1)). The understanding on structure design of redox polymer cathodes and the ion intercalation mechanism for excellent electrochemical performance provided by this study will surely promote the new development of AZIBs for practical applications.
引用
收藏
页码:13868 / 13875
页数:8
相关论文
共 50 条
  • [1] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Pu, Xuechao
    Jiang, Baozheng
    Wang, Xianli
    Liu, Wenbao
    Dong, Liubing
    Kang, Feiyu
    Xu, Chengjun
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [2] A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries
    Ma, Dingxuan
    Zhao, Huimin
    Cao, Fan
    Zhao, Huihui
    Li, Jixin
    Wang, Lei
    Liu, Kang
    CHEMICAL SCIENCE, 2022, 13 (08) : 2385 - 2390
  • [3] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [4] Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries
    Qin, Xing-hua
    Du, Ye-hong
    Zhang, Peng-chao
    Wang, Xin-yu
    Lu, Qiong-qiong
    Yang, Ai-kai
    Sun, Jun-cai
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (10) : 1684 - 1692
  • [5] Ethylene carbonate as an organic electrolyte additive for high-performance aqueous rechargeable zinc-ion batteries
    Wijitrat, Apinya
    Qin, Jiaqian
    Kasemchainan, Jitti
    Tantavichet, Nisit
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 112 : 96 - 105
  • [6] Design and Conformation of Separators for High-performance Aqueous Zinc-Ion Batteries
    Niu, Ben
    Luo, Die
    He, Xianru
    Wang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (65)
  • [7] A Feasible Strategy for High-Performance Aqueous Zinc-Ion Batteries: Introducing Conducting Polymer
    Zhao, Yi
    Wei, Mengzhen
    Zhang, Huanrong
    Zhang, Huimin
    Zhu, Yucheng
    Ma, Hui
    Xue, Mianqi
    CHEMSUSCHEM, 2025, 18 (02)
  • [8] Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Sang, Yuanhua
    Liu, Hong
    Wang, Shuhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19245 - 19281
  • [9] Electrolyte Additive Strategies for Safe and High-Performance Aqueous Zinc-Ion Batteries: A Mini-Review
    Zhang, Da
    Miao, Ling
    Song, Ziyang
    Zheng, Xunwen
    Lv, Yaokang
    Gan, Lihua
    Liu, Mingxian
    ENERGY & FUELS, 2024, 38 (14) : 12510 - 12527
  • [10] Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries
    Zong, Quan
    Wu, Yuanzhe
    Liu, Chaofeng
    Wang, Qianqian
    Zhuang, Yanling
    Wang, Jiangying
    Tao, Daiwen
    Zhang, Qilong
    Cao, Guozhong
    ENERGY STORAGE MATERIALS, 2022, 52 : 250 - 283