In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy

被引:292
作者
Jung, JC
Mehta, AD
Aksay, E
Stepnoski, R
Schnitzer, MJ [1 ]
机构
[1] Stanford Univ, James H Clark Ctr, Dept Biol Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Univ Oxford, Dept Pharmacol, Oxford OX1 3QT, England
[4] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[5] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
关键词
D O I
10.1152/jn.00234.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
One of the major limitations in the current set of techniques available to neuroscientists is a dearth of methods for imaging individual cells deep within the brains of live animals. To overcome this limitation, we developed two forms of minimally invasive fluorescence microendoscopy and tested their abilities to image cells in vivo. Both one- and two-photon fluorescence microendoscopy are based on compound gradient refractive index (GRIN) lenses that are 350-1,000 mum in diameter and provide micron-scale resolution. One-photon microendoscopy allows full-frame images to be viewed by eye or with a camera, and is well suited to fast frame-rate imaging. Two-photon microendoscopy is a laser-scanning modality that provides optical sectioning deep within tissue. Using in vivo microendoscopy we acquired video-rate movies of thalamic and CA1 hippocampal red blood cell dynamics and still-frame images of CA1 neurons and dendrites in anesthetized rats and mice. Microendoscopy will help meet the growing demand for in vivo cellular imaging created by the rapid emergence of new synthetic and genetically encoded fluorophores that can be used to label specific brain areas or cell classes.
引用
收藏
页码:3121 / 3133
页数:13
相关论文
共 86 条
[11]  
Chiu CS, 2002, J NEUROSCI, V22, P10251
[12]   In vivo spectrometric calcium flux recordings of intrinsic caudate-putamen cells and transplanted IMR-32 neuroblastoma cells using miniature fiber optrodes in anesthetized and awake rats and monkeys [J].
Davis, MD ;
Schmidt, JJ .
JOURNAL OF NEUROSCIENCE METHODS, 2000, 99 (1-2) :9-23
[13]   Photon upmanship: Why multiphoton imaging is more than a gimmick [J].
Denk, W ;
Svoboda, K .
NEURON, 1997, 18 (03) :351-357
[14]  
DIASPRO A, 2002, CONFOCAL 2 PHOTON MI
[15]   Micromachined scanning confocal optical microscope [J].
Dickensheets, DL ;
Kino, GS .
OPTICS LETTERS, 1996, 21 (10) :764-766
[16]   Functional magnetic resonance imaging of reorganization in rat brain after stroke [J].
Dijkhuizen, RM ;
Ren, JM ;
Mandeville, JB ;
Wu, ON ;
Ozdag, FM ;
Moskowitz, MA ;
Rosen, BR ;
Finklestein, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) :12766-12771
[17]   INVIVO CONFOCAL SCANNING LASER MICROSCOPY OF THE CEREBRAL MICROCIRCULATION [J].
DIRNAGL, U ;
VILLRINGER, A ;
EINHAUPL, KM .
JOURNAL OF MICROSCOPY-OXFORD, 1992, 165 :147-157
[18]   ANALYSIS AND EVALUATION OF GRADED-INDEX FIBER-LENSES [J].
EMKEY, WL ;
JACK, CA .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1987, 5 (09) :1156-1164
[19]   Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP [J].
Feng, GP ;
Mellor, RH ;
Bernstein, M ;
Keller-Peck, C ;
Nguyen, QT ;
Wallace, M ;
Nerbonne, JM ;
Lichtman, JW ;
Sanes, JR .
NEURON, 2000, 28 (01) :41-51
[20]   MAPPING HUMAN VISUAL-CORTEX WITH POSITRON EMISSION TOMOGRAPHY [J].
FOX, PT ;
MINTUN, MA ;
RAICHLE, ME ;
MIEZIN, FM ;
ALLMAN, JM ;
VANESSEN, DC .
NATURE, 1986, 323 (6091) :806-809