Chaos for linear fractional transformations of shifts

被引:1
|
作者
Jimenez-Munguia, Ronald R. [1 ]
Galan, Victor J. [2 ]
Martinez-Gimenez, Felix [3 ]
Peris, Alfredo [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Iberoamer, Santo Domingo, Dominican Rep
[3] Univ Politecn Valencia, IUMPA, E-46022 Valencia, Spain
关键词
Chaotic operator; Linear fractional transformations; Backward shifts; WEIGHTED SHIFTS; OPERATORS T; F(T); HYPERCYCLICITY; INVARIANT; SPACES;
D O I
10.1016/j.topol.2015.12.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize chaos for phi(B) on Banach sequence spaces, where phi is a Linear Fractional Transformation and B is the usual backward shift operator. Characterizations are computable since they involve only the four complex numbers defining phi. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 50 条
  • [21] Li-Yorke chaos in linear dynamics
    Bernardes, N. C., Jr.
    Bonilla, A.
    Mueller, V.
    Peris, A.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 1723 - 1745
  • [22] Multi linear Fractional Hausdorff Operators
    Fan, Da Shan
    Zhao, Fa You
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (08) : 1407 - 1421
  • [23] Some remarks on distributional chaos for bounded linear operators
    Luo, Lvlin
    Hou, Bingzhe
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (02) : 251 - 258
  • [24] Disjoint hypercyclic linear fractional composition operators
    Bes, J.
    Martin, Oe
    Peris, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) : 843 - 856
  • [25] Finite presentation of a linear-fractional group
    Ashiq, M
    Mushtaq, Q
    ALGEBRA COLLOQUIUM, 2005, 12 (04) : 585 - 589
  • [26] Non linear singular drifts and fractional operators
    Chamorro, Diego
    Menozzi, Stephane
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 5 (06):
  • [27] THE CHAOS OF THE SOLUTION SEMIGROUP FOR THE QUASI-LINEAR LASOTA EQUATION
    Chang, Yu-Hsien
    Hong, Cheng-Hong
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (05): : 1707 - 1717
  • [28] Composition of pseudodifferential operators associated with fractional Hankel-Clifford integral transformations
    Prasad, Akhilesh
    Kumar, Praveen
    APPLICABLE ANALYSIS, 2016, 95 (08) : 1792 - 1807
  • [29] Linear fractional mappings: invariant sets, semigroups and commutativity
    Jacobzon, Fiana
    Reich, Simeon
    Shoikhet, David
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 5 (01) : 63 - 91
  • [30] INVARIANT, DECOUPLING AND BLOCKING ZEROS OF FRACTIONAL LINEAR SYSTEMS
    Kaczorek, Tadeusz
    ACTA MECHANICA ET AUTOMATICA, 2018, 12 (01) : 44 - 48