Curcurnin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element

被引:858
作者
Balogun, E
Hoque, M
Gong, PF
Killeen, E
Green, CJ
Foresti, R
Alam, J
Motterlini, R [1 ]
机构
[1] Northwick Pk Inst Med Res, Dept Surg Res, Vasc Biol Unit, Harrow HA1 3UJ, Middx, England
[2] Alton Ochsner Med Fdn & Ochsner Clin, Dept Mol Genet, New Orleans, LA 70121 USA
关键词
caffeic acid phenethyl ester; cytoprotection; haem oxygenase-1 regulation; plant-derived constituents;
D O I
10.1042/BJ20021619
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transcription factor Nrf2, which normally exists in an inactive state as a consequence of binding to a cytoskeleton-associated protein Keap1, can be activated by redox-dependent stimuli. Alteration of the Nrf2-Keap1 interaction enables Nrf2 to translocate to the nucleus, bind to the antioxidant-responsive element (ARE) and initiate the transcription of genes coding for detoxifying enzymes and cytoprotective proteins. This response is also triggered by a class of electrophilic compounds including polyphenols and plant-derived constituents. Recently, the natural antioxidants curcumin and caffeic acid phenethyl ester (CAPE) have been identified as potent inducers of haem oxygenase-1 (HO-1), a redox-sensitive inducible protein that provides protection against various forms of stress. Here, we show that in renal epithelial cells both curcumin and CAPE stimulate the expression of Nrf2 in a concentration- and time-dependent manner. This effect was associated with a significant increase in HO-1 protein expression and haem oxygenase activity. From several lines of investigation we also report that curcumin (and, by inference, CAPE) stimulates ho-1 gene activity by promoting inactivation of the Nrf2-Keap1 complex, leading to increased Nrf2 binding to the resident ho-1 AREs. Moreover, using antibodies and specific inhibitors of the mitogen-activated protein kinase (MAPK) pathways, we provide data implicating p38 MAPK in curcumin-mediated ho-1 induction. Taken together, these results demonstrate that induction of HO-1 by curcumin and CAPE requires the activation of the Nrf2/ARE pathway.
引用
收藏
页码:887 / 895
页数:9
相关论文
共 42 条
[1]  
Alam J, 2000, J BIOL CHEM, V275, P27694
[2]   Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene [J].
Alam, J ;
Stewart, D ;
Touchard, C ;
Boinapally, S ;
Choi, AMK ;
Cook, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26071-26078
[3]   IDENTIFICATION OF A 2ND REGION UPSTREAM OF THE MOUSE HEME OXYGENASE-1 GENE THAT FUNCTIONS AS A BASAL LEVEL AND INDUCER-DEPENDENT TRANSCRIPTION ENHANCER [J].
ALAM, J ;
CAMHI, S ;
CHOI, AMK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (20) :11977-11984
[4]  
ALAM J, 2000, CURRENT PROTOCOLS TO
[5]   Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue [J].
Asai, A ;
Miyazawa, T .
JOURNAL OF NUTRITION, 2001, 131 (11) :2932-2935
[6]   Curcumin-glutathione interactions and the role of human glutathione S-transferase P1-1 [J].
Awasthi, S ;
Pandya, U ;
Singhal, SS ;
Lin, JT ;
Thiviyanathan, V ;
Seifert, WE ;
Awasthi, YC ;
Ansari, GAS .
CHEMICO-BIOLOGICAL INTERACTIONS, 2000, 128 (01) :19-38
[7]   An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen [J].
Chan, KM ;
Han, XD ;
Kan, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) :4611-4616
[8]   Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice [J].
Chanas, SA ;
Jiang, Q ;
McMahon, M ;
McWalter, GK ;
McLellan, LI ;
Elcombe, CR ;
Henderson, CJ ;
Wolf, CR ;
Moffat, GJ ;
Itoh, K ;
Yamamoto, M ;
Hayes, JD .
BIOCHEMICAL JOURNAL, 2002, 365 (02) :405-416
[9]   Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury [J].
Choi, AMK ;
Alam, J .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 1996, 15 (01) :9-19
[10]   Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction [J].
Clark, JE ;
Foresti, R ;
Sarathchandra, P ;
Kaur, H ;
Green, CJ ;
Motterlini, R .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2000, 278 (02) :H643-H651