Solving the Lane-Emden-Fowler Type Equations of Higher Orders by the Adomian Decomposition Method

被引:0
|
作者
Wazwaz, Abdul-Majid [1 ]
Rach, Randolph
Bougoffa, Lazhar [2 ]
Duan, Jun-Sheng [3 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math, Riyadh 11623, Saudi Arabia
[3] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
来源
基金
上海市自然科学基金;
关键词
Initial value problems; Singularities; Lane-Emden-Fowler equation; Adomian decomposition method; Adomian polynomials; VARIATIONAL ITERATION METHOD; BOUNDARY-VALUE-PROBLEMS; INITIAL-VALUE PROBLEMS; DIFFERENTIAL-EQUATIONS; PARABOLIC EQUATION; PADE TECHNIQUE; SINGULAR IVPS; POLYNOMIALS; ALGORITHM; CONVERGENCE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we construct the Lane-Emden-Fowler type equations of higher orders. We study the linear and the nonlinear Lane-Emden-Fowler type equations of the third and fourth orders, where other forms can be treated in a similar manner. We use the systematic Adomian decomposition method to handle these types of equations with specified initial conditions. We confirm that the Adomian decomposition method provides an efficient algorithm for exact and approximate analytic solutions of these equations. We corroborate this study by investigating several numerical examples that emphasize initial value problems.
引用
收藏
页码:507 / 529
页数:23
相关论文
共 50 条
  • [1] An Effective Modification of Adomian Decomposition Method for Solving Emden–Fowler Type Systems
    J. Biazar
    K. Hosseini
    National Academy Science Letters, 2017, 40 : 285 - 290
  • [2] Solving New Fourth-Order Emden-Fowler-Type Equations by the Adomian Decomposition Method
    Wazwaz, Abdul-Majid
    Rach, Randolph
    Duan, Jun-Sheng
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2015, 16 (02): : 121 - 131
  • [3] Lane-Emden-Fowler equations with convection and singular potential
    Dupaigne, Louis
    Ghergu, Marius
    Radulescu, Vicentiu
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (06): : 563 - 581
  • [4] Solving General Fractional Lane-Emden-Fowler Differential Equations Using Haar Wavelet Collocation Method
    Albalawi, Kholoud Saad
    Kumar, Ashish
    Alkahtani, Badr Saad
    Goswami, Pranay
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [5] Numerical solution of the coupled Lane-Emden-Fowler type equation using the variational iteration method and the Adomian polynomial
    Sinha, Vikash Kumar
    Maroju, Prashanth
    NEW ASTRONOMY, 2024, 109
  • [6] An Effective Modification of Adomian Decomposition Method for Solving Emden-Fowler Type Systems
    Biazar, J.
    Hosseini, K.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2017, 40 (04): : 285 - 290
  • [7] Liouville results for m-Laplace equations of Lane-Emden-Fowler type
    Damascelli, Lucio
    Farina, Alberto
    Sciunzi, Berardino
    Valdinoci, Enrico
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1099 - 1119
  • [8] A Lane-Emden-Fowler type problem with singular nonlinearity
    Covei, Dragos-Patru
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2009, 49 (02): : 325 - 338
  • [9] Enhancing efficiency in solving coupled Lane-Emden-Fowler equations with a novel Tricomi-Carlitz wavelet method
    Gowtham, K. J.
    Gireesha, B. J.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (02):
  • [10] APPROXIMATE ANALYTICAL SOLUTIONS OF GENERALIZED LANE-EMDEN-FOWLER EQUATIONS
    Vassilev, Vassil M.
    Dantchev, Daniel M.
    Popov, Svilen, I
    PROCEEDINGS OF THE TWENTY-FIRST INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2020, 21 : 302 - 309