A data-driven statistical model for predicting the critical temperature of a superconductor

被引:152
作者
Hamidieh, Kam [1 ]
机构
[1] Univ Penn, Wharton Sch, Stat Dept, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
关键词
Superconductivity; Superconductor; Machine learning; Statistical learning; Data mining; Critical temperature;
D O I
10.1016/j.commatsci.2018.07.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor's chemical formula. The statistical model gives reasonable out-of-sample predictions: +/- 9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model's predictive accuracy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only gives predictions for superconductors.
引用
收藏
页码:346 / 354
页数:9
相关论文
共 50 条
  • [41] A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
    Dinh, An
    Miertschin, Stacey
    Young, Amber
    Mohanty, Somya D.
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [42] A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
    An Dinh
    Stacey Miertschin
    Amber Young
    Somya D. Mohanty
    [J]. BMC Medical Informatics and Decision Making, 19
  • [43] Data-Driven Approaches for Predicting and Forecasting Air Quality in Urban Areas
    Rosca, Cosmina-Mihaela
    Carbureanu, Madalina
    Stancu, Adrian
    [J]. APPLIED SCIENCES-BASEL, 2025, 15 (08):
  • [44] A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit
    Yee, Christopher R.
    Narain, Niven R.
    Akmaev, Viatcheslav R.
    Vemulapalli, Vijetha
    [J]. BIOMEDICAL INFORMATICS INSIGHTS, 2019, 11
  • [45] Predicting mud weight in carbonate formations using seismic data: A data-driven approach
    Peshkov, Georgy
    Khemraev, Kerim
    Safonov, Sergey
    Bukhanov, Nikita
    Alali, Ammar
    Abughaban, Mahmoud
    [J]. GEOENERGY SCIENCE AND ENGINEERING, 2025, 250
  • [46] Data-driven approaches in FinTech: a survey
    Tian, Xin
    He, Jing Selena
    Han, Meng
    [J]. INFORMATION DISCOVERY AND DELIVERY, 2021, 49 (02) : 123 - 135
  • [47] Data-driven model for process evaluation in wire EDM
    Kupper, Ugur
    Klink, Andreas
    Bergs, Thomas
    [J]. CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2023, 72 (01) : 169 - 172
  • [48] Data-Driven Model to Predict Aircraft Vibration Environment
    Fevrier, Stephane
    Mathelin, Lionel
    Nachar, Stephane
    Giordano, Frederic
    Podvin, Berengere
    [J]. AIAA JOURNAL, 2023, 61 (10) : 4610 - 4622
  • [49] EPT: A data-driven transformer model for earthquake prediction
    Zhang, Bo
    Hu, Ziang
    Wu, Pin
    Huang, Haiwang
    Xiang, Jiansheng
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [50] A Novel Data-Driven Prediction Model for BOF Endpoint
    Schlueter, Jochen
    Odenthal, Hans-Juergen
    Uebber, Norbert
    Blom, Hendrik
    Morik, Katharina
    [J]. AISTECH 2013: PROCEEDINGS OF THE IRON & STEEL TECHNOLOGY CONFERENCE, VOLS I AND II, 2013, : 923 - 928