A data-driven statistical model for predicting the critical temperature of a superconductor

被引:169
作者
Hamidieh, Kam [1 ]
机构
[1] Univ Penn, Wharton Sch, Stat Dept, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
关键词
Superconductivity; Superconductor; Machine learning; Statistical learning; Data mining; Critical temperature;
D O I
10.1016/j.commatsci.2018.07.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor's chemical formula. The statistical model gives reasonable out-of-sample predictions: +/- 9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model's predictive accuracy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only gives predictions for superconductors.
引用
收藏
页码:346 / 354
页数:9
相关论文
共 21 条
[11]  
Izenman, 2008, Modern multivariate statistical techniques
[12]   EMPIRICAL RELATION BETWEEN SUPERCONDUCTIVITY AND THE NUMBER OF VALENCE ELECTRONS PER ATOM [J].
MATTHIAS, BT .
PHYSICAL REVIEW, 1955, 97 (01) :74-76
[13]  
Nishiyama S., 2017, SCI REP, V7
[14]   Estimation of Superconducting Transition Temperature TC for Superconductors of the Doped MgB2 System from the Crystal Lattice Parameters Using Support Vector Regression [J].
Owolabi, Taoreed O. ;
Akande, Kabiru O. ;
Olatunji, Sunday O. .
JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2015, 28 (01) :75-81
[15]  
Owolabi TO, 2014, Advances in Physics Theories and Applications, V35, P12
[16]  
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO
[17]  
2
[18]  
SCHAPIRE RE, 1990, MACH LEARN, V5, P197, DOI 10.1023/A:1022648800760
[19]   Extreme Gradient Boosting as a Method for Quantitative Structure-Activity Relationships [J].
Sheridan, Robert P. ;
Wang, Wei Min ;
Liaw, Andy ;
Ma, Junshui ;
Gifford, Eric M. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (12) :2353-2360
[20]  
Valentin S., 2017, MACHINE LEARNING MOD