A data-driven statistical model for predicting the critical temperature of a superconductor

被引:169
作者
Hamidieh, Kam [1 ]
机构
[1] Univ Penn, Wharton Sch, Stat Dept, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
关键词
Superconductivity; Superconductor; Machine learning; Statistical learning; Data mining; Critical temperature;
D O I
10.1016/j.commatsci.2018.07.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor's chemical formula. The statistical model gives reasonable out-of-sample predictions: +/- 9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model's predictive accuracy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only gives predictions for superconductors.
引用
收藏
页码:346 / 354
页数:9
相关论文
共 21 条
[1]  
Chen T, 2021, XGBOOST EXTREME GRAD
[2]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[3]   EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction [J].
Chen, Xing ;
Huang, Li ;
Xie, Di ;
Zhao, Qi .
CELL DEATH & DISEASE, 2018, 9
[4]   A second life of the Matthias's rules [J].
Conder, K. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2016, 29 (08)
[5]   Calculation of the relative metastabilities of proteins using the CHNOSZ software package [J].
Dick, Jeffrey M. .
GEOCHEMICAL TRANSACTIONS, 2008, 9 (1)
[6]   BOOSTING A WEAK LEARNING ALGORITHM BY MAJORITY [J].
FREUND, Y .
INFORMATION AND COMPUTATION, 1995, 121 (02) :256-285
[7]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[8]   SnAs-Based Layered Superconductor NaSn2As2 [J].
Goto, Yosuke ;
Yamada, Akira ;
Matsuda, Tatsuma D. ;
Aoki, Yuji ;
Mizuguchi, Yoshikazu .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (12)
[9]  
Hassenzahl W. V., 2000, IEEE Power Engineering Review, V20, P4, DOI 10.1109/39.841342
[10]  
Hastie T, 2009, SPRINGER SERIES STAT, V2nd