Silicon microring synapses enable photonic deep learning beyond 9-bit precision

被引:98
作者
Zhang, Weipeng [1 ]
Huang, Chaoran [1 ,2 ]
Peng, Hsuan-Tung [1 ]
Bilodeau, Simon [1 ]
Jha, Aashu [1 ]
Blow, Eric [1 ]
de Lima, Thomas Ferreira [1 ,3 ]
Shastri, Bhavin J. [4 ,5 ]
Prucnal, Paul [1 ]
机构
[1] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08540 USA
[2] Chinese Univ Hong Kong, Shatin, NT, Hong Kong, Peoples R China
[3] NEC Labs Amer, Princeton, NJ 08540 USA
[4] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
[5] Vector Inst, Toronto, ON M5G 1M1, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
THERMAL STABILIZATION; NETWORKS;
D O I
10.1364/OPTICA.446100
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Deep neural networks (DNNs) consist of layers of neurons interconnected by synaptic weights. A high bit-precision in weights is generally required to guarantee high accuracy in many applications. Minimizing error accumulation between layers is also essential when building large-scale networks. Recent demonstrations of photonic neural networks are limited in bit-precision due to cross talk and the high sensitivity of optical components (e.g., resonators). Here, we experimentally demonstrate a record-high precision of 9 bits with a dithering control scheme for photonic synapses. We then numerically simulated the impact with increased synaptic precision on a wireless signal classification application. This work could help realize the potential of photonic neural networks for many practical, real-world tasks. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:579 / 584
页数:6
相关论文
共 34 条
[1]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[2]   Hardware error correction for programmable photonics [J].
Bandyopadhyay, Saumil ;
Hamerly, Ryan ;
Englund, Dirk .
OPTICA, 2021, 8 (10) :1247-1255
[3]   Silicon microring resonators [J].
Bogaerts, Wim ;
De Heyn, Peter ;
Van Vaerenbergh, Thomas ;
De Vos, Katrien ;
Selvaraja, Shankar Kumar ;
Claes, Tom ;
Dumon, Pieter ;
Bienstman, Peter ;
Van Thourhout, Dries ;
Baets, Roel .
LASER & PHOTONICS REVIEWS, 2012, 6 (01) :47-73
[4]  
Demirkiran C., 2021, ARXIV210901126
[5]   All-optical spiking neurosynaptic networks with self-learning capabilities [J].
Feldmann, J. ;
Youngblood, N. ;
Wright, C. D. ;
Bhaskaran, H. ;
Pernice, W. H. P. .
NATURE, 2019, 569 (7755) :208-+
[6]   Deep learning for finance: deep portfolios [J].
Heaton, J. B. ;
Polson, N. G. ;
Witte, J. H. .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2017, 33 (01) :3-12
[7]  
Huang C, 2020, 2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC)
[8]   Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits [J].
Huang, Chaoran ;
Bilodeau, Simon ;
de Lima, Thomas Ferreira ;
Tait, Alexander N. ;
Ma, Philip Y. ;
Blow, Eric C. ;
Jha, Aashu ;
Peng, Hsuan-Tung ;
Shastri, Bhavin J. ;
Prucnal, Paul R. .
APL PHOTONICS, 2020, 5 (04)
[9]   Training of photonic neural networks through in situ backpropagation and gradient measurement [J].
Hughes, Tyler W. ;
Minkov, Momchil ;
Shi, Yu ;
Fan, Shanhui .
OPTICA, 2018, 5 (07) :864-871
[10]   Crosstalk in SOI Microring Resonator-Based Filters [J].
Jayatilleka, Hasitha ;
Murray, Kyle ;
Caverley, Michael ;
Jaeger, Nicolas A. F. ;
Chrostowski, Lukas ;
Shekhar, Sudip .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (12) :2886-2896