Multiagent Deep Reinforcement Learning for Vehicular Computation Offloading in IoT

被引:141
作者
Zhu, Xiaoyu [1 ]
Luo, Yueyi [2 ,3 ]
Liu, Anfeng [1 ]
Bhuiyan, Md Zakirul Alam [4 ]
Zhang, Shaobo [5 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[3] Cent South Univ, Network Resources Management & Trust Evaluat Key, Changsha 410083, Peoples R China
[4] Fordham Univ, Dept Comp & Informat Sci, New York, NY 10458 USA
[5] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Servers; Computational modeling; Artificial intelligence; Delays; Internet of Things; Wireless communication; Computation offloading; deep reinforcement learning (DRL); mobile-edge computing (MEC); vehicular edge network; RESOURCE-ALLOCATION; WIRELESS; NETWORKS;
D O I
10.1109/JIOT.2020.3040768
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The development of the Internet of Things (IoT) and intelligent vehicles brings a comfortable environment for users. Various emerging vehicular applications using artificial intelligence (AI) technologies are expected to enrich users' daily life. However, how to execute computation-intensive applications on resource-constrained vehicles based on AI still faces great challenges. In this article, we consider the vehicular computation offloading problem in mobile-edge computing (MEC), in which multiple mobile vehicles select nearby MEC servers to offload their computing tasks. We propose a multiagent deep reinforcement learning (DRL)-based computation offloading scheme, in which the uncertainty of a multivehicle environment is considered so that the vehicles can make offloading decisions to achieve an optimal long-term reward. First, we formalize a formula for the computation offloading problem. The goal of this article is to determine the optimal offloading decision to the MEC server under each observed system state, so as to minimize the total task processing delay in a long-term period. Then, we use a multiagent DRL algorithm to learn an effective solution to the vehicular task offloading problem. To evaluate the performance of the proposed offloading scheme, a large number of simulations are carried out. The simulation results verify the effectiveness and superiority of the proposed scheme.
引用
收藏
页码:9763 / 9773
页数:11
相关论文
共 38 条
[1]   Computation Rate Maximization for Wireless Powered Mobile-Edge Computing With Binary Computation Offloading [J].
Bi, Suzhi ;
Zhang, Ying Jun .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (06) :4177-4190
[2]   Optimized Computation Offloading Performance in Virtual Edge Computing Systems via Deep Reinforcement Learning [J].
Chen, Xianfu ;
Zhang, Honggang ;
Wu, Celimuge ;
Mao, Shiwen ;
Ji, Yusheng ;
Bennis, Mehdi .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :4005-4018
[3]   Computation Offloading and Resource Allocation in Mixed Fog/Cloud Computing Systems With Min-Max Fairness Guarantee [J].
Du, Jianbo ;
Zhao, Liqiang ;
Feng, Jie ;
Chu, Xiaoli .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (04) :1594-1608
[4]  
Eshraghi N, 2019, IEEE INFOCOM SER, P1414, DOI [10.1109/infocom.2019.8737559, 10.1109/INFOCOM.2019.8737559]
[5]   Collaborative Computation Offloading for Multiaccess Edge Computing Over Fiber-Wireless Networks [J].
Guo, Hongzhi ;
Liu, Jiajia .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (05) :4514-4526
[6]   Energy-Efficient Dynamic Computation Offloading and Cooperative Task Scheduling in Mobile Cloud Computing [J].
Guo, Songtao ;
Liu, Jiadi ;
Yang, Yuanyuan ;
Xiao, Bin ;
Li, Zhetao .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2019, 18 (02) :319-333
[7]   Integrated Networking, Caching, and Computing for Connected Vehicles: A Deep Reinforcement Learning Approach [J].
He, Ying ;
Zhao, Nan ;
Yin, Hongxi .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (01) :44-55
[8]   Software-Defined Networks with Mobile Edge Computing and Caching for Smart Cities: A Big Data Deep Reinforcement Learning Approach [J].
He, Ying ;
Yu, F. Richard ;
Zhao, Nan ;
Leung, Victor C. M. ;
Yin, Hongxi .
IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (12) :31-37
[9]   Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks [J].
Huang, Liang ;
Bi, Suzhi ;
Zhang, Ying-Jun Angela .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2020, 19 (11) :2581-2593
[10]   Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks [J].
Huang, Liang ;
Feng, Xu ;
Feng, Anqi ;
Huang, Yupin ;
Qian, Li Ping .
MOBILE NETWORKS & APPLICATIONS, 2022, 27 (03) :1123-1130