On semi-infinite cohomology of finite-dimensional graded algebras

被引:3
作者
Bezrukavnikov, Roman [1 ]
Positselski, Leonid [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Inst Informat Transmiss Problems, Sector Algebra & Number Theory, Moscow 127994, Russia
基金
美国国家科学基金会;
关键词
semi-infinite cohomology; small quantum groups; QUANTUM GROUPS;
D O I
10.1112/S0010437X09004382
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a general setting for the definition of semi-infinite cohomology of finite-dimensional graded algebras, and provide an interpretation of such cohomology in terms of derived categories. We apply this interpretation to compute semi-infinite cohomology of some modules over the small quantum group at a root of unity, generalizing an earlier result of Arkhipov (posed as a conjecture by B. Feigin).
引用
收藏
页码:480 / 496
页数:17
相关论文
共 20 条
  • [1] Andersen H. H., 1994, Asterisque, V220
  • [2] ARINKIN D, 2010, MOSCOW MATH IN PRESS
  • [3] Quantum groups, the loop Grassmannian, and the Springer resolution
    Arkhipov, S
    Bezrukavnikov, R
    Ginzburg, V
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (03) : 595 - 678
  • [4] Arkhipov S, 1998, MATH RES LETT, V5, P403
  • [5] Semiinfinite cohomology of quantum groups
    Arkhipov, SM
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (02) : 379 - 405
  • [6] Arkhipov SM, 1997, INT MATH RES NOTICES, V1997, P833
  • [7] Bezrukavnikov R, 2004, CONTEMP MATH, V433, P89
  • [8] Bezrukavnikov R., 1998, Factorizable sheaves and quantum groups, V1691
  • [9] BEZRUKAVNIKOV R, 2000, ARXIVMATHRT0005148
  • [10] BEZRUKAVNIKOV R, 2000, ARXIVMATHAG0005152