Classification of raw myoelectric signals using finite impulse response neural networks

被引:0
|
作者
Atsma, WJ [1 ]
Hudgins, B [1 ]
Lovely, DF [1 ]
机构
[1] Univ New Brunswick, Inst Biomed Engn, Fredericton, NB E3B 5A3, Canada
来源
PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5 | 1997年 / 18卷
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A method for classifying movement patterns of the upper arm, intended for multifunction control of arm prostheses, is presented. A finite impulse response neural network (FIRNN) is trained on 100 msec segments of myoelectric signals (MES) recorded during the very initial stage of elbow flexion (FL) and extension (EX). The network develops a clear internal representation of the input signals and is capable of classifying them.
引用
收藏
页码:1474 / 1475
页数:2
相关论文
共 50 条
  • [41] Convolutional Recurrent Neural Networks for Urban Sound Classification using Raw Waveforms
    Sang, Jonghee
    Park, Soomyung
    Lee, Junwoo
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2444 - 2448
  • [42] Prediction of response to neoadjuvant chemotherapy in breast cancer with recurrent neural networks and raw ultrasound signals
    Byra, Michal
    Dobruch-Sobczak, Katarzyna
    Piotrzkowska-Wroblewska, Hanna
    Klimonda, Ziemowit
    Litniewski, Jerzy
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (18):
  • [43] Classification of Radar Signals with Convolutional Neural Networks
    Hong, Seok-Jun
    Yi, Yearn-Gui
    Jo, Jeil
    Seo, Bo-Seok
    2018 TENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2018), 2018, : 894 - 896
  • [44] NEURAL NETWORKS FOR THE CLASSIFICATION OF NONDESTRUCTIVE EVALUATION SIGNALS
    UDPA, L
    UDPA, SS
    IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1991, 138 (01) : 41 - 45
  • [45] Automatic classification of QAM signals by neural networks
    Taira, S
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 1309 - 1312
  • [46] Efficient Diffraction Modeling Using Neural Networks and Infinite Impulse Response Filters
    Mannall, Joshua
    Savioja, Lauri
    Calamia, Paul
    Mason, Russell
    De Sena, Enzo
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2023, 71 (09): : 566 - 576
  • [47] A hybrid local-global neural network for visual classification using raw EEG signals
    Xue, Shuning
    Jin, Bu
    Jiang, Jie
    Guo, Longteng
    Liu, Jing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [48] Explaining deep neural networks processing raw diagnostic signals
    Herwig, Nico
    Borghesani, Pietro
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [49] DoA Estimation using Cascaded Neural Networks and Angle Classification for Coherent Signals
    Khandelwal, Jigyasu
    Latha, M. Madhuri
    Nilesh, Nitin
    Chaudhari, Sachin
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [50] Classification of audio radar signals using radial basis function neural networks
    McConaghy, T
    Leung, H
    Bossé, É
    Varadan, V
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2003, 52 (06) : 1771 - 1779