A convergence result for the approximation of the Navier-Stokes equations by an incremental projection method

被引:11
作者
Guermond, JL [1 ]
机构
[1] LIMSI, F-91403 Orsay, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1997年 / 325卷 / 12期
关键词
D O I
10.1016/S0764-4442(97)82364-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An incremental projection method is proposed to approximate the Navier-Stokes equations. The error or? the velocity in the semi-discrete norm I-2(L-2(Omega)(d)) is shown to be O(delta t(2) + h(l+1)), where l greater than or equal to 1 is the polynomial degree of the velocity approximation. It is also shown that the splitting error of the projection schemes that are based on the incremental pressure correction is O(delta t(2)); this result holds even if the approximation of the time derivative of the velocity is O(delta t).
引用
收藏
页码:1329 / 1332
页数:4
相关论文
共 7 条
[1]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[2]   MULTISTEP TECHNIQUE WITH IMPLICIT DIFFERENCE SCHEMES FOR CALCULATING 2-DIMENSIONAL OR 3-DIMENSIONAL CAVITY FLOWS [J].
GODA, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (01) :76-95
[3]  
Guermond JL, 1996, ESAIM-MATH MODEL NUM, V30, P637
[4]   Calculation of incompressible viscous flows by an unconditionally stable projection FEM [J].
Guermond, JL ;
Quartapelle, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 132 (01) :12-33
[5]  
RANNACHER R, 1992, LECT NOTES MATH, V1530, P1678
[6]  
TEMAM R, 1968, B SOC MATH FR, V96, P115
[7]   A 2ND-ORDER ACCURATE PRESSURE-CORRECTION SCHEME FOR VISCOUS INCOMPRESSIBLE-FLOW [J].
VANKAN, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03) :870-891