Time-reversal symmetry in dynamical systems: A survey

被引:368
作者
Lamb, JSW [1 ]
Roberts, JAG
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
[2] La Trobe Univ, Sch Math, Bundoora, Vic 3083, Australia
来源
PHYSICA D | 1998年 / 112卷 / 1-2期
基金
英国工程与自然科学研究理事会;
关键词
dynamical systems; time-reversal symmetry; reversibility;
D O I
10.1016/S0167-2789(97)00199-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we survey the topic of time-reversal symmetry in dynamical systems. We begin with a brief discussion of the position of time-reversal symmetry in physics. After defining time-reversal symmetry as it applies to dynamical systems, we then introduce a major theme of our survey, namely the relation of time-reversible dynamical systems to equivariant and Hamiltonian dynamical systems. We follow with a survey of the state of the art on the theory of reversible dynamical systems, including results on symmetric periodic orbits, local bifurcation theory, homoclinic orbits, and renormalization and scaling. Some areas of physics and mathematics in which reversible dynamical systems arise are discussed. In an appendix, we provide an extensive bibliography on the topic of time-reversal symmetry in dynamical systems.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 26 条
[1]  
[Anonymous], 1988, A Brief History of Time
[2]  
[Anonymous], LECT NOTES MATH
[3]  
[Anonymous], SYMMETRY CHAOS SEARC
[5]  
Boltzmann L., 1872, Sitzungsberichte Akad. Wiss., V66, P275, DOI DOI 10.1007/978-3-322-84986-1_3
[6]  
Bredon G. E., 1972, PURE APPL MATH, V46
[8]  
BRUSH SG, 1966, KINETIC THEORY, V2
[9]   INTRODUCTION TO BIFURCATION-THEORY [J].
CRAWFORD, JD .
REVIEWS OF MODERN PHYSICS, 1991, 63 (04) :991-1037
[10]   SYMMETRY DECOMPOSITION OF CHAOTIC DYNAMICS [J].
CVITANOVIC, P ;
ECKHARDT, B .
NONLINEARITY, 1993, 6 (02) :277-311