Approximate calculation of eigenvalues with the method of weighted residuals-collocation method

被引:47
作者
Çelik, I [1 ]
机构
[1] Pammukkale Univ, Dept Math, Fac Arts & Sci, TR-20017 Denizli, Turkey
关键词
eigenvalue problem; collocation method; Chebyshev series;
D O I
10.1016/j.amc.2003.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, the collocation method of the weight residual methods are investigated for the approximate computation of higher Sturm-Liouville eigenvalues, where trial solution is accepted as the Chebyshev series. The obtained approximate eigenvalues are compared with the previous computational results [ANZIAM J. 42 (2000) C96, Numer. Math. 47 (1985) 289, Numer. Math. 59 (1991) 243, Appl. Numer. Math. 23 (1997) 311, Computing 26 (1981) 123]. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:401 / 410
页数:10
相关论文
共 7 条
[1]   Quadrature errors in finite element eigenvalue computations [J].
Andrew, AL .
ANZIAM JOURNAL, 2000, 42 :136-140
[2]   CORRECTION OF NUMEROVS EIGENVALUE ESTIMATES [J].
ANDREW, AL ;
PAINE, JW .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :289-300
[4]  
Fox L., 1968, CHEBYSHEV POLYNOMIAL
[5]   Approximations of Sturm-Liouville eigenvalues using Boundary Value Methods [J].
Ghelardoni, P .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (03) :311-325
[6]   ON THE CORRECTION OF FINITE-DIFFERENCE EIGENVALUE APPROXIMATIONS FOR STURM-LIOUVILLE PROBLEMS [J].
PAINE, JW ;
de Hoog, FR ;
ANDERSSEN, RS .
COMPUTING, 1981, 26 (02) :123-139
[7]   ACCURATE COMPUTATION OF HIGHER STURM-LIOUVILLE EIGENVALUES [J].
VANDENBERGHE, G ;
DEMEYER, H .
NUMERISCHE MATHEMATIK, 1991, 59 (03) :243-254