The existence of multiple positive solutions for a semilinear elliptic equation in RN

被引:8
作者
Wu, Tsung-Fang [1 ]
机构
[1] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
关键词
Multiple positive solutions; Nehari manifold; Semilinear elliptic equations; NODAL SOLUTIONS;
D O I
10.1016/j.na.2009.12.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of semilinear elliptic equations in R-N. By means of the Lusternik-Schnirelman category and Bahri and Li's minimax argument, multiple positive solutions are obtained. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3412 / 3421
页数:10
相关论文
共 27 条
[1]  
Adachi S, 2000, CALC VAR PARTIAL DIF, V11, P63, DOI 10.1007/s005260050003
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
AMBROSETTI A, 1992, B SOC MATH FRANCE, V49
[4]  
[Anonymous], 1990, REV MAT IBEROAM, DOI DOI 10.4171/RMI/92
[5]   On the existence of a positive solution of semilinear elliptic equations in unbounded domains [J].
Bahri, A ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :365-413
[6]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[7]   Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrodinger equation [J].
Bartsch, Thomas ;
Clapp, Monica ;
Weth, Tobias .
MATHEMATISCHE ANNALEN, 2007, 338 (01) :147-185
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[10]   POSITIVE SOLUTION AND BIFURCATION FROM THE ESSENTIAL SPECTRUM OF A SEMILINEAR ELLIPTIC EQUATION ON RN [J].
CAO, DM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (11) :1045-1052