Computation of the real logarithm for a discrete-time nonlinear system

被引:15
作者
Menini, Laura [1 ]
Tornambe, Antonio [1 ]
机构
[1] Univ Roma Tor Vergata, Dip Informat Sistemi & Produz, I-00133 Rome, Italy
关键词
Sampled-data systems; Symmetries; Poincare-Dulac normal form; SAMPLED-DATA SYSTEMS; APPROXIMATIONS; STABILIZATION; MODELS; FORMS;
D O I
10.1016/j.sysconle.2009.11.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a given nonlinear discrete-time dynamical system, the problem is considered of finding, if any, a continuous-time nonlinear dynamical system such that the given system is its exact sampled-data representation. Constructive solutions to the problem are given by geometric tools such as symmetries. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 23 条
[1]  
[Anonymous], CLASSICS APPL MATH
[2]  
[Anonymous], 2000, THEORY MATRICES
[3]  
Boothby W. M., 1975, INTRO DIFFERENTIABLE
[4]  
Borchers S., 2009, P 16 IFAC S ID SYST
[5]  
CICOGNA G, 1999, LECT PHYS MONOGRAPHS, V57
[7]   Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems [J].
Ding, Feng ;
Qiu, Li ;
Chen, Tongwen .
AUTOMATICA, 2009, 45 (02) :324-332
[8]   Poincare normal and renormalized forms [J].
Gaeta, G .
ACTA APPLICANDAE MATHEMATICAE, 2002, 70 (1-3) :113-131
[9]   Normal forms of maps: Formal and algebraic aspects [J].
Gramchev, T ;
Walcher, S .
ACTA APPLICANDAE MATHEMATICAE, 2005, 87 (1-3) :123-146
[10]   FEEDBACK LINEARIZATION OF SAMPLED-DATA SYSTEMS [J].
GRIZZLE, JW ;
KOKOTOVIC, PV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (09) :857-859