Impact of the anode operating conditions on the liquid water distribution in the cathode gas diffusion layer

被引:10
作者
Carrere, Pierre [1 ]
Prat, Marc [1 ]
机构
[1] Univ Toulouse, CNRS, Inst Mecan Fluides Toulouse IMFT, Toulouse, France
关键词
Water management; Pore network modelling; Anode-cathode model; PEMFC; MEMBRANE FUEL-CELLS; PORE-NETWORK; COUPLED CONTINUUM; OXYGEN-TRANSPORT; CATALYST LAYER; 2-PHASE FLOW; PHASE-CHANGE; SATURATION; MEDIA; PEFCS;
D O I
10.1016/j.ijhydene.2020.03.120
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Previous experimental results indicate that the humidification conditions at the anode have an impact on the liquid water distribution in the cathode gas diffusion layer. Numerical simulations are developed to reproduce and analyze this effect. Results consistent with the experimental results are first obtained by playing with the partition coefficients of an advanced pore network model computing the liquid water formation and transfer in the cathode gas diffusion layer (GDL) for a large range of operating conditions. Then, a model for the full anode - cathode assembly is developed by combining the pore network model of the cathode GDL and a 1D model describing the heat and water transfer in the various components of the anode-cathode assembly. This enables one to generalize the dry - wet regime diagram introduced in a previous work by incorporating the effect of the humidity condition at the anode. (c)& nbsp;2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:17534 / 17549
页数:16
相关论文
共 60 条
[1]   Pore network modeling of phase change in PEM fuel cell fibrous cathode [J].
Aghighi, Mahmoudreza ;
Gostick, Jeff .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (12) :1323-1338
[2]   Simulation of a Full Fuel Cell Membrane Electrode Assembly Using Pore Network Modeling [J].
Aghighi, Mahmoudreza ;
Hoeh, Michael A. ;
Lehnert, Werner ;
Merle, Geraldine ;
Gostick, Jeff .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (05) :F384-F392
[3]   Coupling of a continuum fuel cell model with a discrete liquid water percolation model [J].
Alink, R. ;
Gerteisen, D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (16) :8457-8473
[4]   Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network [J].
Alink, Robert ;
Gerteisen, Dietmar .
ENERGIES, 2013, 6 (09) :4508-4530
[5]   A Comparison of Felt-Type and Paper-Type Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cell Applications Using X-Ray Techniques [J].
Banerjee, R. ;
Chevalier, S. ;
Liu, H. ;
Lee, J. ;
Yip, R. ;
Han, K. ;
Hong, B. K. ;
Bazylak, A. .
JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2018, 15 (01)
[6]   Transient Liquid Water Distributions in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers Observed through In-Operando Synchrotron X-ray Radiography [J].
Banerjee, Rupak ;
Ge, Nan ;
Lee, Jongmin ;
George, Michael G. ;
Chevalier, Stephane ;
Liu, Hang ;
Shrestha, Pranay ;
Muirhead, Daniel ;
Bazylak, Aimy .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :F154-F162
[7]   Coupled continuum and condensation-evaporation pore network model of the cathode in polymer-electrolyte fuel cell [J].
Belgacem, Najib ;
Prat, Marc ;
Pauchet, Joel .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (12) :8150-8165
[8]   Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell [J].
Burheim, O. ;
Vie, P. J. S. ;
Pharoah, J. G. ;
Kjelstrup, S. .
JOURNAL OF POWER SOURCES, 2010, 195 (01) :249-256
[9]   Liquid water in cathode gas diffusion layers of PEM fuel cells: Identification of various pore filling regimes from pore network simulations (vol 129, pg 1043, 2019) [J].
Carrere, P. ;
Prat, M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 137 :1323-1325
[10]   Liquid water in cathode gas diffusion layers of PEM fuel cells: Identification of various pore filling regimes from pore network simulations [J].
Carrere, P. ;
Prat, M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 129 :1043-1056