Convenient patterning and precisely programmable shape deformations are crucial for the practical applications of shape deformable hydrogels. Here, a facile and versatile computer-assisted ion inkjet printing technique is described that enables the direct printing of batched, very complicated patterns, especially those with well-defined, programmable variation in cross-linking densities, on one or both surfaces of a large-sized hydrogel sample. A mechanically strong hydrogel containing poly(sodium acrylate) is first prepared, and then digital patterns are printed onto the hydrogel surfaces by using a commercial inkjet printer and an aqueous ferric solution. The complexation between the polyelectrolyte and ferric ions increases the cross-linking density of the printed regions, and hence the gel sample can undergo shape deformation upon swelling/deswelling. The deformation rates and degrees of the hydrogels can be conveniently adjusted by changing the printing times or the different/gradient grayscale distribution of designed patterns. By printing appropriate patterns on one or both surfaces of the hydrogel sheets, many complex 3D shapes are obtained from shape deformations upon swelling/deswelling, such as cylindrical shell and forsythia flower (patterns on one surface), ding (patterns on both surfaces), blooming flower (different/gradient grayscale distributive patterns on one surface), and non-Euclidean plates (different/gradient grayscale distributive patterns on both surfaces).