Lung Nodule and Cancer Detection in Computed Tomography Screening

被引:95
作者
Rubin, Geoffrey D. [1 ]
机构
[1] Duke Clin Res Inst, Durham, NC 27705 USA
关键词
lung nodule; lung cancer; pulmonary nodule; computed tomography; image processing; eye tracking; computer-aided detection; SMALL PULMONARY NODULES; MAXIMUM-INTENSITY-PROJECTION; IMAGE-DATABASE-CONSORTIUM; LOW-DOSE CT; AIDED DETECTION; CHEST CT; RADIOLOGIST PERFORMANCE; MULTIDETECTOR CT; HELICAL CT; SCANS;
D O I
10.1097/RTI.0000000000000140
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Fundamental to the diagnosis of lung cancer in computed tomography (CT) scans is the detection and interpretation of lung nodules. As the capabilities of CT scanners have advanced, higher levels of spatial resolution reveal tinier lung abnormalities. Not all detected lung nodules should be reported; however, radiologists strive to detect all nodules that might have relevance to cancer diagnosis. Although medium to large lung nodules are detected consistently, interreader agreement and reader sensitivity for lung nodule detection diminish substantially as the nodule size falls below 8 to 10 mm. The difficulty in establishing an absolute reference standard presents a challenge to the reliability of studies performed to evaluate lung nodule detection. In the interest of improving detection performance, investigators are using eye tracking to analyze the effectiveness with which radiologists search CT scans relative to their ability to recognize nodules within their search path in order to determine whether strategies might exist to improve performance across readers. Beyond the viewing of transverse CT reconstructions, image processing techniques such as thin-slab maximum-intensity projections are used to substantially improve reader performance. Finally, the development of computer-aided detection has continued to evolve with the expectation that one day it will serve routinely as a tireless partner to the radiologist to enhance detection performance without significant prolongation of the interpretive process. This review provides an introduction to the current understanding of these varied issues as we enter the era of widespread lung cancer screening.
引用
收藏
页码:130 / 138
页数:9
相关论文
共 66 条
[1]   Results of the Two Incidence Screenings in the National Lung Screening Trial [J].
Aberle, Denise R. ;
DeMello, Sarah ;
Berg, Christine D. ;
Black, William C. ;
Brewer, Brenda ;
Church, Timothy R. ;
Clingan, Kathy L. ;
Duan, Fenghai ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine A. ;
Gierada, David S. ;
Jain, Amanda ;
Jones, Gordon C. ;
Mahon, Irene ;
Marcus, Pamela M. ;
Rathmell, Joshua M. ;
Sicks, JoRean .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (10) :920-931
[2]  
American College of Radiology, Lung CT screening reporting & data system (Lung-RADS)
[3]   Optimizing Analysis, Visualization, and Navigation of Large Image Data Sets: One 5000-Section CT Scan Can Ruin Your Whole Day [J].
Andriole, Katherine P. ;
Wolfe, Jeremy M. ;
Khorasani, Ramin ;
Treves, S. Ted ;
Getty, David J. ;
Jacobson, Francine L. ;
Steigner, Michael L. ;
Pan, John J. ;
Sitek, Arkadiusz ;
Seltzer, Steven E. .
RADIOLOGY, 2011, 259 (02) :346-362
[4]   Temporal Subtraction Method for Lung Nodule Detection on Successive Thoracic CT Soft-Copy Images1 [J].
Aoki, Takatoshi ;
Murakami, Seiichi ;
Kim, Hyoungseop ;
Fujii, Masami ;
Takahashi, Hiroyuki ;
Oki, Hodaka ;
Hayashida, Yoshiko ;
Katsuragawa, Shigehiko ;
Shiraishi, Junji ;
Korogi, Yukunori .
RADIOLOGY, 2014, 271 (01) :255-261
[5]   The Lung Image Database Consortium (LIDC): An evaluation of radiologist variability in the identification of lung nodules on CT scans [J].
Armato, Samuel G., III ;
McNitt-Gray, Michael F. ;
Reeves, Anthony P. ;
Meyer, Charles R. ;
McLennan, Geoffrey ;
Aberle, Denise R. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Hoffman, Eric A. ;
Henschke, Claudia I. ;
Roberts, Rachael Y. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Pais, Richard C. ;
Piker, Christopher W. ;
Qing, David ;
Kocherginsky, Masha ;
Croft, Barbara Y. ;
Clarke, Laurence P. .
ACADEMIC RADIOLOGY, 2007, 14 (11) :1409-1421
[6]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[7]   Assessment of Radiologist Performance in the Detection of Lung Nodules: Dependence on the Definition of "Truth" [J].
Armato, Samuel G., III ;
Roberts, Rachael Y. ;
Kocherginsky, Masha ;
Aberle, Denise R. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
McLennan, Geoffrey ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Caligiuri, Philip ;
Quint, Leslie E. ;
Sundaram, Baskaran ;
Croft, Barbara Y. ;
Clarke, Laurence P. .
ACADEMIC RADIOLOGY, 2009, 16 (01) :28-38
[8]   Lung cancer: Performance of automated lung nodule detection applied to cancers missed in a CT screening program [J].
Armato, SG ;
Li, F ;
Giger, ML ;
MacMahon, H ;
Sone, S ;
Doi, K .
RADIOLOGY, 2002, 225 (03) :685-692
[9]   Small pulmonary nodules: Detection at chest CT and outcome [J].
Benjamin, MS ;
Drucker, EA ;
McLoud, TC ;
Shepard, JAO .
RADIOLOGY, 2003, 226 (02) :489-493
[10]   Computer-aided lung nodule detection in CT: Results of large-scale observer test [J].
Brown, MS ;
Goldin, JG ;
Rogers, S ;
Kim, HJ ;
Suh, RD ;
McNitt-Gray, MF ;
Shah, SK ;
Truong, D ;
Brown, K ;
Sayre, JW ;
Gjertson, DW ;
Batra, P ;
Aberle, DR .
ACADEMIC RADIOLOGY, 2005, 12 (06) :681-686