An in-silico approach to predict and exploit synthetic lethality in cancer metabolism

被引:86
作者
Apaolaza, Inigo [1 ,2 ]
San Jose-Eneriz, Edurne [3 ]
Tobalina, Luis [1 ,2 ,4 ]
Miranda, Estibaliz [3 ]
Garate, Leire [3 ]
Agirre, Xabier [3 ]
Prosper, Felipe [3 ]
Planes, Francisco J. [1 ,2 ]
机构
[1] Univ Navarra, CEIT, Manuel de Lardizabal 15, San Sebastian 20018, Spain
[2] Univ Navarra, Tecnun, Manuel de Lardizabal 15, San Sebastian 20018, Spain
[3] Univ Navarra, Ciberonc, IDISNA, Area Hematooncol,CIMA, Pio 12 55, E-31080 Pamplona, Spain
[4] Rhein Westfal TH Aachen, Joint Res Ctr Computat Biomed, Fac Med, MTI2 Wendlingweg 2, D-52074 Aachen, Germany
关键词
MINIMAL CUT SETS; RIBONUCLEOTIDE REDUCTASE; RNA-SEQ; NETWORKS; THERAPY; MODES; DIDOX;
D O I
10.1038/s41467-017-00555-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synthetic lethality is a promising concept in cancer research, potentially opening new possibilities for the development of more effective and selective treatments. Here, we present a computational method to predict and exploit synthetic lethality in cancer metabolism. Our approach relies on the concept of genetic minimal cut sets and gene expression data, demonstrating a superior performance to previous approaches predicting metabolic vulnerabilities in cancer. Our genetic minimal cut set computational framework is applied to evaluate the lethality of ribonucleotide reductase catalytic subunit M1 (RRM1) inhibition in multiple myeloma. We present a computational and experimental study of the effect of RRM1 inhibition in four multiple myeloma cell lines. In addition, using publicly available genome-scale loss-of-function screens, a possible mechanism by which the inhibition of RRM1 is effective in cancer is established. Overall, our approach shows promising results and lays the foundation to build a novel family of algorithms to target metabolism in cancer.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers [J].
Agirre, Xabier ;
Castellano, Giancarlo ;
Pascual, Marien ;
Heath, Simon ;
Kulis, Marta ;
Segura, Victor ;
Bergmann, Anke ;
Esteve, Anna ;
Merkel, Angelika ;
Raineri, Emanuele ;
Agueda, Lidia ;
Blanc, Julie ;
Richardson, David ;
Clarke, Laura ;
Datta, Avik ;
Russinol, Nuria ;
Queiros, Ana C. ;
Beekman, Renee ;
Rodriguez-Madoz, Juan R. ;
San Jose-Eneriz, Edurne ;
Fang, Fang ;
Gutierrez, Norma C. ;
Garcia-Verdugo, Jose M. ;
Robson, Michael I. ;
Schirmer, Eric C. ;
Guruceaga, Elisabeth ;
Martens, Joost H. A. ;
Gut, Marta ;
Calasanz, Maria J. ;
Flicek, Paul ;
Siebert, Reiner ;
Campo, Elias ;
San Miguel, Jesus F. ;
Melnick, Ari ;
Stunnenberg, Hendrik G. ;
Gut, Ivo G. ;
Prosper, Felipe ;
Martin-Subero, Jose I. .
GENOME RESEARCH, 2015, 25 (04) :478-487
[2]   Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling [J].
Agren, Rasmus ;
Mardinoglu, Adil ;
Asplund, Anna ;
Kampf, Caroline ;
Uhlen, Mathias ;
Nielsen, Jens .
MOLECULAR SYSTEMS BIOLOGY, 2014, 10 (03)
[3]   RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia [J].
Aimiuwu, Josephine ;
Wang, Hongyan ;
Chen, Ping ;
Xie, Zhiliang ;
Wang, Jiang ;
Liu, Shujun ;
Klisovic, Rebecca ;
Mims, Alice ;
Blum, William ;
Marcucci, Guido ;
Chan, Kenneth K. .
BLOOD, 2012, 119 (22) :5229-5238
[4]   Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies [J].
Aye, Y. ;
Li, M. ;
Long, M. J. C. ;
Weiss, R. S. .
ONCOGENE, 2015, 34 (16) :2011-2021
[5]   Minimal cut sets in a metabolic network are elementary modes in a dual network [J].
Ballerstein, Kathrin ;
von Kamp, Axel ;
Klamt, Steffen ;
Haus, Utz-Uwe .
BIOINFORMATICS, 2012, 28 (03) :381-387
[6]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[7]   Context-specific metabolic networks are consistent with experiments [J].
Becker, Scott A. ;
Palsson, Bernhard O. .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (05)
[8]   Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies [J].
Cowley, Glenn S. ;
Weir, Barbara A. ;
Vazquez, Francisca ;
Tamayo, Pablo ;
Scott, Justine A. ;
Rusin, Scott ;
East-Seletsky, Alexandra ;
Ali, Levi D. ;
Gerath, William F. J. ;
Pantel, Sarah E. ;
Lizotte, Patrick H. ;
Jiang, Guozhi ;
Hsiao, Jessica ;
Tsherniak, Aviad ;
Dwinell, Elizabeth ;
Aoyama, Simon ;
Okamoto, Michael ;
Harrington, William ;
Gelfand, Ellen ;
Green, Thomas M. ;
Tomko, Mark J. ;
Gopal, Shuba ;
Wong, Terence C. ;
Li, Hubo ;
Howell, Sara ;
Stransky, Nicolas ;
Liefeld, Ted ;
Pang, Dongkeun ;
Bistline, Jonathan ;
Meyers, Barbara Hill ;
Armstrong, Scott A. ;
Anderson, Ken C. ;
Stegmaier, Kimberly ;
Reich, Michael ;
Pellman, David ;
Boehm, Jesse S. ;
Mesirov, Jill P. ;
Golub, Todd R. ;
Root, David E. ;
Hahn, William C. .
SCIENTIFIC DATA, 2014, 1
[9]   Computing the shortest elementary flux modes in genome-scale metabolic networks [J].
de Figueiredo, Luis F. ;
Podhorski, Adam ;
Rubio, Angel ;
Kaleta, Christoph ;
Beasley, John E. ;
Schuster, Stefan ;
Planes, Francisco J. .
BIOINFORMATICS, 2009, 25 (23) :3158-3165
[10]   Synthetic lethal metabolic targeting of cellular senescence in cancer therapy [J].
Doerr, Jan R. ;
Yu, Yong ;
Milanovic, Maja ;
Beuster, Gregor ;
Zasada, Christin ;
Daebritz, J. Henry M. ;
Lisec, Jan ;
Lenze, Dido ;
Gerhardt, Anne ;
Schleicher, Katharina ;
Kratzat, Susanne ;
Purfuerst, Bettina ;
Walenta, Stefan ;
Mueller-Klieser, Wolfgang ;
Graeler, Markus ;
Hummel, Michael ;
Keller, Ulrich ;
Buck, Andreas K. ;
Doerken, Bernd ;
Willmitzer, Lothar ;
Reimann, Maurice ;
Kempa, Stefan ;
Lee, Soyoung ;
Schmitt, Clemens A. .
NATURE, 2013, 501 (7467) :421-+