Interfacial Defect Passivation and Stress Release via Multi-Active-Site Ligand Anchoring Enables Efficient and Stable Methylammonium-Free Perovskite Solar Cells

被引:227
作者
Liu, Baibai [1 ]
Bi, Huan [1 ]
He, Dongmei [1 ]
Bai, Le [1 ]
Wang, Wenqi [1 ]
Yuan, Hongkuan [2 ]
Song, Qunliang [3 ]
Su, Pengyu [4 ]
Zang, Zhigang [1 ]
Zhou, Tingwei [2 ]
Chen, Jiangzhao [1 ]
机构
[1] Chongqing Univ, Coll Optoelect Engn, Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
[2] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China
[3] Southwest Univ, Sch Mat & Energy, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China
[4] Yangtze Normal Univ, Sch Elect Informat Engn, Chongqing 408100, Peoples R China
关键词
HALIDE PEROVSKITES; PERFORMANCE; DEGRADATION; STABILITY; IMPROVES; STATES;
D O I
10.1021/acsenergylett.1c00794
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interfacial trap-assisted non-radiative recombination and residual stress impede the further increase of power conversion efficiency (PCE) and stability of the methylammonium-free (MA-free) perovskite solar cells (PSCs). Here, we report an interfacial defect passivation and stress release strategy through employing the multi-active-site Lewis base ligand (i.e., (5-mercapto-1,3,4-thiadiazol-2-ylthio)acetic acid (MTDAA)) to modify the surface and grain boundaries (GBs) of MA-free perovskite films. Both experimental and theoretical results confirm strong chemical interactions between multiple active sites in the MTDAA molecule and undercoordinated Pb2+ at the surface or GBs of perovskite films. It is demonstrated theoretically that multi-active-site adsorption is more favorable thermodynamically as compared to single-active-site adsorption, regardless of PbI(2)( )termination and formamidinium iodide (FM) termination types. MTDAA modification results in much reduced defect density, increased carrier lifetime, and almost thoroughly released interfacial residual stress. Upon MTDAA passivation, the PCE is boosted from 20.26% to 21.92%. The unencapsulated device modified by MTDAA maintains 99% of its initial PCE after aging under the relative humidity range of 10-20% for 1776 h, and 91% after aging at 60 degrees C for 1032 h.
引用
收藏
页码:2526 / 2538
页数:13
相关论文
共 78 条
[61]   Regulating strain in perovskite thin films through charge-transport layers [J].
Xue, Ding-Jiang ;
Hou, Yi ;
Liu, Shun-Chang ;
Wei, Mingyang ;
Chen, Bin ;
Huang, Ziru ;
Li, Zongbao ;
Sun, Bin ;
Proppe, Andrew H. ;
Dong, Yitong ;
Saidaminov, Makhsud I. ;
Kelley, Shana O. ;
Hu, Jin-Song ;
Sargent, Edward H. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[62]   An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation [J].
Yang, Ning ;
Zhu, Cheng ;
Chen, Yihua ;
Zai, Huachao ;
Wang, Chenyue ;
Wang, Xi ;
Wang, Hao ;
Ma, Sai ;
Gao, Ziyan ;
Wang, Xueyun ;
Hong, Jiawang ;
Bai, Yang ;
Zhou, Huanping ;
Cui, Bin-Bin ;
Chen, Qi .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) :4344-4352
[63]   Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MA-Free Perovskite Solar Cells [J].
Yao, Qin ;
Xue, Qifan ;
Li, Zhenchao ;
Zhang, Kaicheng ;
Zhang, Teng ;
Li, Ning ;
Yang, Shihe ;
Brabec, Christoph J. ;
Yip, Hin-Lap ;
Cao, Yong .
ADVANCED MATERIALS, 2020, 32 (26)
[64]   Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells [J].
Yi, Chenyi ;
Luo, Jingshan ;
Meloni, Simone ;
Boziki, Ariadni ;
Ashari-Astani, Negar ;
Graetzel, Carole ;
Zakeeruddin, Shaik M. ;
Roethlisberger, Ursula ;
Graetzel, Michael .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :656-662
[65]   An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss [J].
Yoo, Jason J. ;
Wieghold, Sarah ;
Sponseller, Melany C. ;
Chua, Matthew R. ;
Bertram, Sophie N. ;
Hartono, Noor Titan Putri ;
Tresback, Jason S. ;
Hansen, Eric C. ;
Correa-Baena, Juan-Pablo ;
Bulovic, Vladimir ;
Buonassisi, Tonio ;
Shin, Seong Sik ;
Bawendi, Moungi G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) :2192-2199
[66]   An Equivalent Circuit for Perovskite Solar Cell Bridging Sensitized to Thin Film Architectures [J].
Yoo, So-Min ;
Yoon, Seog Joon ;
Anta, Juan A. ;
Lee, Hyo Joong ;
Boix, Pablo P. ;
Mora-Sero, Ivan .
JOULE, 2019, 3 (10) :2535-2549
[67]   Multifunctional Polymer-Regulated SnO2Nanocrystals Enhance Interface Contact for Efficient and Stable Planar Perovskite Solar Cells [J].
You, Shuai ;
Zeng, Haipeng ;
Ku, Zhiliang ;
Wang, Xiaoze ;
Wang, Zhen ;
Rong, Yaoguang ;
Zhao, Yang ;
Zheng, Xin ;
Luo, Long ;
Li, Lin ;
Zhang, Shujing ;
Li, Min ;
Gao, Xingyu ;
Li, Xiong .
ADVANCED MATERIALS, 2020, 32 (43)
[68]   A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells [J].
You, Shuai ;
Wang, Hui ;
Bi, Shiqing ;
Zhou, Jiyu ;
Qin, Liang ;
Qiu, Xiaohui ;
Zhao, Zhiqiang ;
Xu, Yun ;
Zhang, Yuan ;
Shi, Xinghua ;
Zhou, Huiqiong ;
Tang, Zhiyong .
ADVANCED MATERIALS, 2018, 30 (22)
[69]   The Role of Chlorine in the Formation Process of "CH3NH3PbI3-xClx" Perovskite [J].
Yu, Hui ;
Wang, Feng ;
Xie, Fangyan ;
Li, Wenwu ;
Chen, Jian ;
Zhao, Ni .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (45) :7102-7108
[70]   Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells [J].
Yu, Yue ;
Wang, Changlei ;
Grice, Corey R. ;
Shrestha, Niraj ;
Zhao, Dewei ;
Liao, Weiqiang ;
Guan, Lei ;
Awni, Rasha A. ;
Meng, Weiwei ;
Cimaroli, Alexander J. ;
Zhu, Kai ;
Ellingson, Randy J. ;
Yan, Yanfa .
ACS ENERGY LETTERS, 2017, 2 (05) :1177-1182