Interaction properties between different modes of localized and propagating surface plasmons in a dimer nanoparticle array

被引:3
作者
Ma, Qilin [1 ,2 ]
Liu, Guangqiang [2 ]
Feng, Sujuan [3 ]
Chen, Yiqing [1 ]
Cai, Weiping [2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Anhui Key Lab Nanomat & Nanotechnol, Hefei, Anhui, Peoples R China
[3] Qufu Normal Univ, Sch Phys & Engn, Shandong Prov Key Lab Laser Polarizat & Informat, Qufu, Peoples R China
基金
中国国家自然科学基金;
关键词
plasmon interaction; surface plasmon polaritons; localized surface plasmon resonances; electric field intensity enhancement; ENHANCED RAMAN-SCATTERING; FIELD ENHANCEMENT; FLUORESCENCE; SPECTROSCOPY; MOLECULES; NANODISK; SILVER;
D O I
10.1117/1.OE.57.8.087108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When the peak positions of propagating surface plasmon polaritons (SPPs) and localized surface plasmon resonances (LSPRs) become very close to each other in a single nanoparticle array structure, an anticrossing behavior of the surface plasmon resonances (SPRs) peak positions usually occurs, which can considerably enhance the near-field intensity. We first report on the interaction of two types of SPRs in a dimer nanodisk-SiO2 spacer-gold film hybrid sandwich structure. The anticrossing behavior does not appear always due to various modes of LSPRs in such structures. Moreover, a crossing behavior also appears based on the interaction of SPPs and a longitudinal bonding mode of LSPRs. When the anticrossing behavior occurs, a bandgap that changes only with the array period also appears. This bandgap influences the electric field intensity enhancement not only in the anticrossing behavior but also in the crossing behavior. The electric field intensity distribution properties both in the anticrossing behavior and crossing behavior are discussed with reference to the hybrid properties of the SPPs and LSPRs modes. Furthermore, we report on the occurrence mechanisms of these different behaviors. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:6
相关论文
共 28 条
[1]   Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes [J].
Camargo, Pedro H. C. ;
Au, Leslie ;
Rycenga, Matthew ;
Li, Weiyang ;
Xia, Younan .
CHEMICAL PHYSICS LETTERS, 2010, 484 (4-6) :304-308
[2]   Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J].
Cao, YWC ;
Jin, RC ;
Mirkin, CA .
SCIENCE, 2002, 297 (5586) :1536-1540
[3]   Electromagnetic coupling between a metal nanoparticle grating and a metallic surface [J].
Cesario, J ;
Quidant, R ;
Badenes, G ;
Enoch, S .
OPTICS LETTERS, 2005, 30 (24) :3404-3406
[4]   Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model [J].
Chu, Yizhuo ;
Wang, Dongxing ;
Zhu, Wenqi ;
Crozier, Kenneth B. .
OPTICS EXPRESS, 2011, 19 (16) :14919-14928
[5]   Experimental study of the interaction between localized and propagating surface plasmons [J].
Chu, Yizhuo ;
Crozier, Kenneth B. .
OPTICS LETTERS, 2009, 34 (03) :244-246
[6]   A frequency domain existence proof of single-molecule surface-enhanced Raman Spectroscopy [J].
Dieringer, Jon A. ;
Lettan, Robert B., II ;
Scheidt, Karl A. ;
Van Duyne, Richard P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (51) :16249-16256
[7]   Fluorescence imaging of surface plasmon fields [J].
Ditlbacher, H ;
Krenn, JR ;
Felidj, N ;
Lamprecht, B ;
Schider, G ;
Salerno, M ;
Leitner, A ;
Aussenegg, FR .
APPLIED PHYSICS LETTERS, 2002, 80 (03) :404-406
[8]   Nanoplasmonics: Classical down to the Nanometer Scale [J].
Duan, Huigao ;
Fernandez-Dominguez, Antonio I. ;
Bosman, Michel ;
Maier, Stefan A. ;
Yang, Joel K. W. .
NANO LETTERS, 2012, 12 (03) :1683-1689
[9]   In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement [J].
Flauraud, Valentin ;
Regmi, Raju ;
Winkler, Pamina M. ;
Alexander, Duncan T. L. ;
Rigneault, Herve ;
van Hulst, Niek F. ;
Garcia-Parajo, Maria F. ;
Wenger, Jerome ;
Brugger, Jurgen .
NANO LETTERS, 2017, 17 (03) :1703-1710
[10]   Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays [J].
Ghoshal, Amitabh ;
Kik, Pieter G. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (11)