External control of qubit-photon interaction and multi-qubit reset in a dissipative quantum network

被引:4
作者
Zhang, Xian-Peng [1 ,2 ,3 ,4 ]
Shen, Li-Tuo [1 ,2 ]
Zhang, Yuan [5 ]
Sun, Luyan [6 ]
Wu, Huaizhi [1 ,2 ]
Yang, Zhen-Biao [1 ,2 ]
Yin, Zhang-Qi [7 ,8 ]
机构
[1] Fuzhou Univ, Fujian Key Lab Quantum Informat & Quantum Opt, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, Dept Phys, Fuzhou 350116, Peoples R China
[3] Donostia Int Phys Ctr, San Sebastian 20018, Spain
[4] Univ Basque Country, CSIC, Ctr Mixto, Ctr Fis Mat, San Sebastian 20018, Spain
[5] Zhengzhou Univ, Sch Phys & Microelect, Key Lab Mat Phys, Minist Educ, Zhengzhou 450052, Peoples R China
[6] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
[7] Beijing Inst Technol, Sch Phys, Ctr Quantum Technol Res, Beijing 100081, Peoples R China
[8] Beijing Inst Technol, Sch Phys, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2021年 / 64卷 / 05期
基金
中国国家自然科学基金;
关键词
quantum computation; quantum reservior engineering; quantum network; 03; 67; -a; Lx; 65; Yz; 42; 50; Ct; ENTANGLEMENT; REALIZATION; SIMULATION;
D O I
10.1007/s11433-020-1647-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum network is a promising quantum many-body system because of its tailored geometry and controllable interaction. Here, we propose an external control scheme for the qubit-photon interaction and multiqubit reset in a dissipative quantum network, which comprises superconducting circuit chains with microwave drives and filter-filter couplings. The traditional multiqubit reset of the quantum network requires physically disconnected qubits to prevent their entanglement. However, we use an original effect of dissipation, i.e., consuming the entanglement generated by qubits' interaction, to achieve an external control of the multiqubit reset in an always-connected superconducting circuit. The reset time is independent of the number of qubits in the quantum network. Our proposal can tolerate considerable fluctuations in the system parameters and can be applicable to higher-dimensional quantum networks.
引用
收藏
页数:11
相关论文
共 55 条
[11]  
Deng H., ARXIV191112536
[12]   Superconducting Circuits for Quantum Information: An Outlook [J].
Devoret, M. H. ;
Schoelkopf, R. J. .
SCIENCE, 2013, 339 (6124) :1169-1174
[13]   Pulsed Reset Protocol for Fixed-Frequency Superconducting Qubits [J].
Egger, D. J. ;
Werninghaus, M. ;
Ganzhorn, M. ;
Salis, G. ;
Fuhrer, A. ;
Mueller, P. ;
Filipp, S. .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)
[14]   Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice [J].
Fitzpatrick, Mattias ;
Sundaresan, Neereja M. ;
Li, Andy C. Y. ;
Koch, Jens ;
Houck, Andrew A. .
PHYSICAL REVIEW X, 2017, 7 (01)
[15]   Demonstrating a Driven Reset Protocol for a Superconducting Qubit [J].
Geerlings, K. ;
Leghtas, Z. ;
Pop, I. M. ;
Shankar, S. ;
Frunzio, L. ;
Schoelkopf, R. J. ;
Mirrahimi, M. ;
Devoret, M. H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[16]   Self-cooling of a micromirror by radiation pressure [J].
Gigan, S. ;
Boehm, H. R. ;
Paternostro, M. ;
Blaser, F. ;
Langer, G. ;
Hertzberg, J. B. ;
Schwab, K. C. ;
Baeuerle, D. ;
Aspelmeyer, M. ;
Zeilinger, A. .
NATURE, 2006, 444 (7115) :67-70
[17]   Quantum phase transitions of light [J].
Greentree, Andrew D. ;
Tahan, Charles ;
Cole, Jared H. ;
Hollenberg, Lloyd C. L. .
NATURE PHYSICS, 2006, 2 (12) :856-861
[18]   Strongly interacting polaritons in coupled arrays of cavities [J].
Hartmann, Michael J. ;
Brandao, Fernando G. S. L. ;
Plenio, Martin B. .
NATURE PHYSICS, 2006, 2 (12) :849-855
[19]   Controlling the spontaneous emission of a superconducting transmon qubit [J].
Houck, A. A. ;
Schreier, J. A. ;
Johnson, B. R. ;
Chow, J. M. ;
Koch, Jens ;
Gambetta, J. M. ;
Schuster, D. I. ;
Frunzio, L. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[20]  
Houck AA, 2012, NAT PHYS, V8, P292, DOI [10.1038/NPHYS2251, 10.1038/nphys2251]