Recurrence properties of sequences of integers

被引:6
作者
Fan AiHua [1 ]
Schneider, Dominique [2 ]
机构
[1] Univ Picardie, UMR 6140, LAMFA, CNRS, F-80039 Amiens, France
[2] Univ Lille Nord France, CNRS, FR 2956, LMPA J Liouville, F-62228 Calais, France
关键词
recurrent set; random sequence; Wiener-Wintner theorem; HARMONIC-ANALYSIS; BOHR-GROUP; THIN SETS; POINCARE; THEOREM;
D O I
10.1007/s11425-010-0044-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to study the recurrence of sequences of integers, we investigate their L-2-exactness and Theta-Hartman property (Theta being a set of rational numbers). Two classes of sequences of integers are well studied, which are return times relative to a weakly mixing system and Bernoulli random sequences.
引用
收藏
页码:641 / 656
页数:16
相关论文
共 20 条
[1]   INTERSECTIVE SETS AND THE RECURRENCE OF POINCARE [J].
BERTRANDMATHIS, A .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 55 (02) :184-198
[2]   HOMOGENEOUSLY DISTRIBUTED SEQUENCES AND POINCARE SEQUENCES OF INTEGERS OF SUBLACUNARY GROWTH [J].
BOSHERNITZAN, M .
MONATSHEFTE FUR MATHEMATIK, 1983, 96 (03) :173-181
[3]   ON THE MAXIMAL ERGODIC THEOREM FOR CERTAIN SUBSETS OF THE INTEGERS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (01) :39-72
[4]  
BOURGAIN J, 1989, PUBL IHES, V69, P5, DOI DOI 10.1007/BF02698838
[5]   On a Littlewood-Salem inequality [J].
Fan, AH ;
Schneider, D .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (02) :193-216
[6]   Multiple recurrence and convergence for sequences related to the prime numbers [J].
Frantzikinakis, Nikos ;
Host, Bernard ;
Kra, Bryna .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 611 :131-144
[7]   Sets of k-recurrence but not (k+1)-recurrence [J].
Frantzikinakis, Nikos ;
Lesigne, Emmanuel ;
Wierdl, Mate .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (04) :839-849
[8]  
Furstenberg H., 1981, RECURRENCE ERGODIC T
[9]  
Hartman S., 1964, COMPOS MATH, V16, P66
[10]  
Kahane JP, 2008, J ANAL MATH, V105, P363, DOI 10.1007/s11854-008-0040-6