Phase-field system with two temperatures and a nonlinear coupling term

被引:5
作者
Bangola, Brice Landry Doumbe [1 ]
机构
[1] USTM, URMI, BP 943, Franceville, Gabon
来源
AIMS MATHEMATICS | 2018年 / 3卷 / 02期
关键词
Caginalp phase-field system; two temperatures; well-posedness; disspativity; spatial bahavior; Phragmen-Lindelof alternative; LONG-TIME BEHAVIOR; DYNAMIC BOUNDARY-CONDITIONS; EXPONENTIAL ATTRACTORS; ASYMPTOTIC-BEHAVIOR; CAGINALP SYSTEM; MODEL; CONVERGENCE; THERMOELASTICITY; EXISTENCE; EQUATIONS;
D O I
10.3934/Math.2018.2.298
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subject of this paper is the qualitative study of a generalization of Caginalp phase-field system involving two temperatures and a nonlinear coupling. First, we prove the well-posedness of the corresponding initial and boundary value problem, and we study the dissipativity properties of the system, in terms of bounded absorbing sets. We end by analyzing the spatial behavior of solutions in a semi-infinite cylinder, assuming the existence of such solutions.
引用
收藏
页码:298 / 315
页数:18
相关论文
共 49 条
[1]   Long-time convergence of solutions to a phase-field system [J].
Aizicovici, S ;
Feireisl, E ;
Issard-Roch, F .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (05) :277-287
[2]  
Aizicovici S., 2001, J. Evol. Equ, V1, P69, DOI [10.1007/PL00001365, DOI 10.1007/PL00001365]
[3]  
[Anonymous], 1997, INFINITE DIMENSIONAL
[4]  
[Anonymous], THESIS
[5]  
[Anonymous], ELECT J DIFFERENTIAL
[6]  
[Anonymous], 1996, HYSTERESIS PHASE TRA
[7]  
[Anonymous], DYNAMICS CONT DIS IM
[8]   Global and exponential attractors for a Caginalp type phase-field problem [J].
Bangola, Brice Doumbe .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (09) :1651-1676
[9]  
Brochet D., 1993, Applicable Analysis, V49, P197, DOI 10.1080/00036819108840173
[10]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205