Locally indistinguishable subspaces spanned by three-qubit unextendible product bases

被引:64
作者
Duan, Runyao [1 ,2 ]
Xin, Yu [3 ,4 ]
Ying, Mingsheng [1 ,2 ]
机构
[1] Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[2] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Tsinghua Natl Lab Informat Sci & Technol, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[3] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[4] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 03期
基金
中国国家自然科学基金;
关键词
BOUND ENTANGLEMENT; QUANTUM; STATES;
D O I
10.1103/PhysRevA.81.032329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the local distinguishability of general multiqubit states and show that local projective measurements and classical communication are as powerful as the most general local measurements and classical communication. Remarkably, this indicates that the local distinguishability of multiqubit states can be decided efficiently. Another useful consequence is that a set of orthogonal n-qubit states is locally distinguishable only if the summation of their orthogonal Schmidt numbers is less than the total dimension 2(n). Employing these results, we show that any orthonormal basis of a subspace spanned by arbitrary three-qubit orthogonal unextendible product bases (UPB) cannot be exactly distinguishable by local operations and classical communication. This not only reveals another intrinsic property of three-qubit orthogonal UPB but also provides a class of locally indistinguishable subspaces with dimension 4. We also explicitly construct locally indistinguishable subspaces with dimensions 3 and 5, respectively. Similar to the bipartite case, these results on multipartite locally indistinguishable subspaces can be used to estimate the one-shot environment-assisted classical capacity of a class of quantum broadcast channels.
引用
收藏
页数:10
相关论文
共 24 条
[1]   Unextendible product bases [J].
Alon, N ;
Lovász, L .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 95 (01) :169-179
[2]   Local distinguishability of any three quantum states [J].
Bandyopadhyay, Somshubhro ;
Walgate, Jonathan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (07)
[3]   Unextendible product bases and bound entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5385-5388
[4]   Quantum nonlocality without entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Fuchs, CA ;
Mor, T ;
Rains, E ;
Shor, PW ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW A, 1999, 59 (02) :1070-1091
[5]   Unextendible Product Bases and Locally Unconvertible Bound Entangled States [J].
Bravyi, S. B. .
QUANTUM INFORMATION PROCESSING, 2004, 3 (06) :309-329
[6]   Condition for unambiguous state discrimination using local operations and classical communication [J].
Chefles, A .
PHYSICAL REVIEW A, 2004, 69 (05) :050307-1
[7]   Local distinguishability with preservation of entanglement [J].
Cohen, Scott M. .
PHYSICAL REVIEW A, 2007, 75 (05)
[8]   Counterexamples to Additivity of Minimum Output p-Renyi Entropy for p Close to 0 [J].
Cubitt, Toby ;
Harrow, Aram W. ;
Leung, Debbie ;
Montanaro, Ashley ;
Winter, Andreas .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (01) :281-290
[9]   Unextendible product bases, uncompletable product bases and bound entanglement [J].
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (03) :379-410
[10]   Quantum data hiding [J].
DiVincenzo, DP ;
Leung, DW ;
Terhal, BM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) :580-598