Periodic solution of a Mathieu-Duffing type equation

被引:38
作者
Esmailzadeh, E
NakhaieJazar, G
机构
关键词
Mathieu-Duffing type equation; non-linear parametric vibration; non-autonomous systems; periodic condition;
D O I
10.1016/S0020-7462(96)00119-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is found that there exists necessary and sufficient conditions for the existence of at least one periodic solution for a type of parametric second-order ordinary differential equations, known as the Mathieu-Duffing equation. The correctness of the conditions have been pointed out by the Schauder's fixed point theorem, and the validity of the assumptions has been shown by the analysis of an illustrative example in non-linear vibration. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:905 / 912
页数:8
相关论文
共 14 条
[1]   ON THE NON-LINEAR VIBRATION PROBLEM OF THE ELASTIC STRING [J].
CARRIER, GF .
QUARTERLY OF APPLIED MATHEMATICS, 1945, 3 (02) :157-165
[2]  
EFIMOV AV, 1985, MATH ANAL
[3]   PERIODIC BEHAVIOR OF A NONLINEAR DYNAMICAL SYSTEM [J].
ESMAILZADEH, E ;
GHORASHI, M ;
MEHRI, B .
NONLINEAR DYNAMICS, 1995, 7 (03) :335-344
[4]  
Hale J.K., 1969, Ordinary differential equations
[5]  
Hill G, 1886, ACTA MATH, V8, P1, DOI [DOI 10.1007/BF02417081, 10.1007/BF02417081]
[6]  
Love A. E. H., 2013, TREATISE MATH THEORY, V1
[7]  
Mathieu M., 1868, J MATH PURE APPL, V13, P137
[8]  
McLachlan N. W., 1956, Ordinary Non-Linear Differential Equations in Engineering and Physical Sciences
[9]  
Meirovitch L, 1967, ANAL METHODS VIBRATI
[10]  
Pliss V.A., 1965, DIFFERENTIAL URAVNEN, P1428