Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico

被引:38
作者
Harker-Kirschneck, Lena [1 ,2 ]
Baum, Buzz [2 ,3 ]
Saric, Andela [1 ,2 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] UCL, Inst Phys Living Syst, Gower St, London WC1E 6BT, England
[3] UCL, MRC Lab Mol Cell Biol, Gower St, London WC1E 6BT, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会; 英国惠康基金;
关键词
ESCRT-III; Membrane remodelling; Membrane scission; Computer simulations; Biological physics; SCISSION; COMPLEX; PROTEINS; CARGO; SHAPE;
D O I
10.1186/s12915-019-0700-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background ESCRT-III is a membrane remodelling filament with the unique ability to cut membranes from the inside of the membrane neck. It is essential for the final stage of cell division, the formation of vesicles, the release of viruses, and membrane repair. Distinct from other cytoskeletal filaments, ESCRT-III filaments do not consume energy themselves, but work in conjunction with another ATP-consuming complex. Despite rapid progress in describing the cell biology of ESCRT-III, we lack an understanding of the physical mechanisms behind its force production and membrane remodelling. Results Here we present a minimal coarse-grained model that captures all the experimentally reported cases of ESCRT-III driven membrane sculpting, including the formation of downward and upward cones and tubules. This model suggests that a change in the geometry of membrane bound ESCRT-III filaments-from a flat spiral to a 3D helix-drives membrane deformation. We then show that such repetitive filament geometry transitions can induce the fission of cargo-containing vesicles. Conclusions Our model provides a general physical mechanism that explains the full range of ESCRT-III-dependent membrane remodelling and scission events observed in cells. This mechanism for filament force production is distinct from the mechanisms described for other cytoskeletal elements discovered so far. The mechanistic principles revealed here suggest new ways of manipulating ESCRT-III-driven processes in cells and could be used to guide the engineering of synthetic membrane-sculpting systems.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation [J].
Adell, Manuel Alonso Y. ;
Vogel, Georg F. ;
Pakdel, Mehrshad ;
Mueller, Martin ;
Lindner, Herbert ;
Hess, Michael W. ;
Teis, David .
JOURNAL OF CELL BIOLOGY, 2014, 205 (01) :33-49
[2]   Domes and cones: Adhesion-induced fission of membranes by ESCRT proteins [J].
Agudo-Canalejo, Jaime ;
Lipowsky, Reinhard .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (08)
[3]   The Conserved ESCRT-III Machinery Participates in the Phagocytosis of Entamoeba histolytica [J].
Avalos-Padilla, Yunuen ;
Knorr, Roland L. ;
Javier-Reyna, Rosario ;
Garcia-Rivera, Guillermina ;
Lipowsky, Reinhard ;
Dimova, Rumiana ;
Orozco, Esther .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2018, 8
[4]   ESCRT-III: An endosome-associated heterooligomeric protein complex required for MVB sorting [J].
Babst, M ;
Katzmann, DJ ;
Estepa-Sabal, EJ ;
Meerloo, T ;
Emr, SD .
DEVELOPMENTAL CELL, 2002, 3 (02) :271-282
[5]   Late budding domains and host proteins in enveloped virus release [J].
Bieniasz, PD .
VIROLOGY, 2006, 344 (01) :55-63
[6]   Parallels between cytokinesis and retroviral budding: A role for the ESCRT machinery [J].
Carlton, Jez G. ;
Martin-Serrano, Juan .
SCIENCE, 2007, 316 (5833) :1908-1912
[7]   Structure of cellular ESCRT-III spirals and their relationship to HIV budding [J].
Cashikar, Anil G. ;
Shim, Soomin ;
Roth, Robyn ;
Maldazys, Michael R. ;
Heuser, John E. ;
Hanson, Phyllis I. .
ELIFE, 2014, 3
[8]   Dynamic and elastic shape transitions in curved ESCRT-III filaments [J].
Chiaruttini, Nicolas ;
Roux, Aurelien .
CURRENT OPINION IN CELL BIOLOGY, 2017, 47 :126-135
[9]   Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation [J].
Chiaruttini, Nicolas ;
Redondo-Morata, Lorena ;
Colom, Adai ;
Humbert, Frederic ;
Lenz, Martin ;
Scheuring, Simon ;
Roux, Aurelien .
CELL, 2015, 163 (04) :866-879
[10]   Tunable generic model for fluid bilayer membranes [J].
Cooke, IR ;
Kremer, K ;
Deserno, M .
PHYSICAL REVIEW E, 2005, 72 (01)