Unbiased Prediction and Feature Selection in High-Dimensional Survival Regression

被引:19
作者
Laimighofer, Michael [1 ,2 ]
Krumsiek, Jan [1 ,3 ]
Buettner, Florian [1 ,4 ]
Theis, Fabian J. [1 ,2 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Dept Math, Garching, Germany
[3] German Ctr Diabet Res DZD, Munich, Germany
[4] European Mol Biol Lab Hinxton, European Bioinformat Inst, Cambridge, England
基金
英国医学研究理事会;
关键词
high-dimensional survival regression; feature selection; repeated nested cross validation; PENALIZED COX REGRESSION; BREAST-CANCER PATIENTS; EXPRESSION; MODEL; RISK;
D O I
10.1089/cmb.2015.0192
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With widespread availability of omics profiling techniques, the analysis and interpretation of high-dimensional omics data, for example, for biomarkers, is becoming an increasingly important part of clinical medicine because such datasets constitute a promising resource for predicting survival outcomes. However, early experience has shown that biomarkers often generalize poorly. Thus, it is crucial that models are not overfitted and give accurate results with new data. In addition, reliable detection of multivariate biomarkers with high predictive power (feature selection) is of particular interest in clinical settings. We present an approach that addresses both aspects in high-dimensional survival models. Within a nested cross-validation (CV), we fit a survival model, evaluate a dataset in an unbiased fashion, and select features with the best predictive power by applying a weighted combination of CV runs. We evaluate our approach using simulated toy data, as well as three breast cancer datasets, to predict the survival of breast cancer patients after treatment. In all datasets, we achieve more reliable estimation of predictive power for unseen cases and better predictive performance compared to the standard CoxLasso model. Taken together, we present a comprehensive and flexible framework for survival models, including performance estimation, final feature selection, and final model construction. The proposed algorithm is implemented in an open source R package (SurvRank) available on CRAN.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 28 条
[1]   Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study [J].
Abbasi, Ali ;
Peelen, Linda M. ;
Corpeleijn, Eva ;
van der Schouw, Yvonne T. ;
Stolk, Ronald P. ;
Spijkerman, Annemieke M. W. ;
van der A, Daphne L. ;
Moons, Karel G. M. ;
Navis, Gerjan ;
Bakker, Stephan J. L. ;
Beulens, Joline W. J. .
BMJ-BRITISH MEDICAL JOURNAL, 2012, 345
[2]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[3]  
[Anonymous], BMC SYST BIOL
[4]   A time-dependent discrimination index for survival data [J].
Antolini, L ;
Boracchi, P ;
Biganzoli, E .
STATISTICS IN MEDICINE, 2005, 24 (24) :3927-3944
[5]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[6]  
COX DR, 1972, J R STAT SOC B, V34, P187
[7]   Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO [J].
Datta, Susmita ;
Le-Rademacher, Jennifer ;
Datta, Somnath .
BIOMETRICS, 2007, 63 (01) :259-271
[8]   Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series [J].
Desmedt, Christine ;
Piette, Fanny ;
Loi, Sherene ;
Wang, Yixin ;
d'assignies, Mahasti Saghatchian ;
Bergh, Jonas ;
Lidereau, Rosette ;
Ellis, Paul ;
Harris, Adrian L. ;
Klijn, Jan G. M. ;
Foekens, John A. ;
Cardoso, Fatima ;
Piccart, Martine J. ;
Buyse, Marc ;
Sotiriou, Christos .
CLINICAL CANCER RESEARCH, 2007, 13 (11) :3207-3214
[9]   Molecular staging for survival prediction of colorectal cancer patients [J].
Eschrich, S ;
Yang, I ;
Bloom, G ;
Kwong, KY ;
Boulware, D ;
Cantor, A ;
Coppola, D ;
Kruhoffer, M ;
Aaltonen, L ;
Orntoft, TF ;
Quackenbush, J ;
Yeatman, TJ .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (15) :3526-3535
[10]   PROJECTING INDIVIDUALIZED PROBABILITIES OF DEVELOPING BREAST-CANCER FOR WHITE FEMALES WHO ARE BEING EXAMINED ANNUALLY [J].
GAIL, MH ;
BRINTON, LA ;
BYAR, DP ;
CORLE, DK ;
GREEN, SB ;
SCHAIRER, C ;
MULVIHILL, JJ .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1989, 81 (24) :1879-1886