Critical Relaxation of a Three-Dimensional Fully Frustrated Ising Model

被引:0
|
作者
Mutailamov, V. A. [1 ]
Murtazaev, A. K. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Phys, Dagestan Sci Ctr, Makhachkala 367032, Dagestan Republ, Russia
[2] Dagestan State Univ, Makhachkala 367008, Dagestan Republ, Russia
关键词
TIME CRITICAL-DYNAMICS; CUBIC LATTICE;
D O I
10.1134/S1063783418060264
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Critical relaxation from the low-temperature ordered state of the three-dimensional fully frustrated Ising model on a simple cubic lattice is studied by the short-time dynamics method. Cubic systems with periodic boundary conditions and linear sizes of L = 32, 64, 96, and 128 in each crystallographic direction are studied. Calculations were carried out by the Monte Carlo method using the standard Metropolis algorithm. The static critical exponents for the magnetization and correlation radius and the dynamic critical exponents are calculated.
引用
收藏
页码:1120 / 1124
页数:5
相关论文
共 50 条
  • [31] Critical sound attenuation of three-dimensional Ising systems
    Prudnikov, P. V.
    Prudnikov, V. V.
    CONDENSED MATTER PHYSICS, 2006, 9 (02) : 403 - 410
  • [32] Critical behavior of the three-dimensional Ising spin glass
    Ballesteros, HG
    Cruz, A
    Fernández, LA
    Martín-Mayor, V
    Pech, J
    Ruiz-Lorenzo, JJ
    Tarancón, A
    Téllez, P
    Ullod, CL
    Ungil, C
    PHYSICAL REVIEW B, 2000, 62 (21) : 14237 - 14245
  • [33] Critical parameters of the three-dimensional Ising spin glass
    Baity-Jesi, M.
    Banos, R. A.
    Cruz, A.
    Fernandez, L. A.
    Gil-Narvion, J. M.
    Gordillo-Guerrero, A.
    Iniguez, D.
    Maiorano, A.
    Mantovani, F.
    Marinari, E.
    Martin-Mayor, V.
    Monforte-Garcia, J.
    Munoz Sudupe, A.
    Navarro, D.
    Parisi, G.
    Perez-Gaviro, S.
    Pivanti, M.
    Ricci-Tersenghi, F.
    Ruiz-Lorenzo, J. J.
    Schifano, S. F.
    Seoane, B.
    Tarancon, A.
    Tripiccione, R.
    Yllanes, D.
    PHYSICAL REVIEW B, 2013, 88 (22):
  • [34] Spin liquid and quantum phase transition without symmetry breaking in a frustrated three-dimensional Ising model
    Roechner, Julia
    Balents, Leon
    Schmidt, Kai Phillip
    PHYSICAL REVIEW B, 2016, 94 (20)
  • [35] Zero-temperature relaxation of three-dimensional Ising ferromagnets
    Olejarz, J.
    Krapivsky, P. L.
    Redner, S.
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [36] Overlap distribution of the three-dimensional Ising model
    Berg, BA
    Billoire, A
    Janke, W
    PHYSICAL REVIEW E, 2002, 66 (04): : 6 - 046122
  • [37] Competitive dynamics in a three-dimensional Ising model
    Leao, JRS
    Grandi, BCS
    Figueiredo, W
    PHYSICAL REVIEW E, 1999, 60 (05): : 5367 - 5370
  • [38] Three-dimensional Ising model and transfer matrices
    Lou, SL
    Wu, SH
    CHINESE JOURNAL OF PHYSICS, 2000, 38 (04) : 841 - 854
  • [39] Exact Solution for Three-Dimensional Ising Model
    Zhang, Degang
    SYMMETRY-BASEL, 2021, 13 (10):
  • [40] The critical temperature of two-dimensional and three-dimensional Ising models
    Liu, B
    Gitterman, M
    AMERICAN JOURNAL OF PHYSICS, 2003, 71 (08) : 806 - 808