Friction stir welding of AA2024-T3: development of numerical simulation considering thermal history and heat generation

被引:9
作者
Amini, Cyrus [1 ]
Hasanifard, Soran [1 ]
Zehsaz, Mohammad [1 ]
Jerez-Mesa, Ramon [2 ]
Antonio Travieso-Rodriguez, J. [2 ]
机构
[1] Univ Tabriz, Mech Engn Dept, 29 Bahman Blvd, Tabriz 5166616471, Iran
[2] Univ Politecn Cataluna, Mech Engn Dept, Escola Engn Barcelona Est, Caner Eduard Maristany 10-12, Barcelona 1012, Spain
关键词
Temperature-dependent friction; Friction stir welding; Frictional heat generated; MECHANICAL-PROPERTIES; TEMPERATURE DISTRIBUTION; PROCESS PARAMETERS; MODEL; MICROSTRUCTURE; PREDICTION; BEHAVIOR; ENERGY; FLOW;
D O I
10.1007/s00170-021-07184-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a finite element model implemented in ANSYS using Lagrangian formulation to assess heat generation and friction dynamics of a friction stir welding process on AA2024-T3 aluminum plates. For that aim, the model is enriched by estimating a temperature-dependent friction coefficient using theoretical relationships, and by considering a temperature-dependent multilinear isotropic hardening equation as a plasticity model representing the material. Both quantitative determinations are confirmed through experimental data collected on the real material. Finally, the contact conditions are modeled using the modified Coulomb criterion. The results of the model are in agreement with actual results observed on experimental applications. The study proves that the rotational speed of the tool is the most determinant factor in the results. As it rises, the friction-generated heat flow is higher. This study shows that the compressive stress-strain data in strain rate of 10s(-1) is a good approximation of the plasticity behavior of aluminum alloy during the friction stir welding.
引用
收藏
页码:2481 / 2500
页数:20
相关论文
共 60 条
[51]   Thermal energy generation and distribution in friction stir welding of aluminum alloys [J].
Su, H. ;
Wu, C. S. ;
Pittner, A. ;
Rethmeier, M. .
ENERGY, 2014, 77 :720-731
[52]  
Thompson M.K., 2017, ANSYS Mechanical APDL for Finite Element Analysis
[53]   Friction stir welding of aluminium alloys [J].
Threadgill, P. L. ;
Leonard, A. J. ;
Shercliff, H. R. ;
Withers, P. J. .
INTERNATIONAL MATERIALS REVIEWS, 2009, 54 (02) :49-93
[54]   Flow stress prediction for hot deformation processing of 2024Al-T3 alloy [J].
Trimble, D. ;
O'Donnell, G. E. .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2016, 26 (05) :1232-1250
[55]   Three-dimensional modeling of the friction stir-welding process [J].
Ulysse, P .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2002, 42 (14) :1549-1557
[56]   Optimizing creep lifetime of friction stir welded PMMA pipes subjected to combined loadings using rheological model [J].
Vakili-Tahami, Farid ;
Adibeig, Mohammad Reza ;
Hassanifard, Soran .
POLYMER TESTING, 2019, 79
[57]   Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy [J].
Yau, Y. H. ;
Hussain, A. ;
Lalwani, R. K. ;
Chan, H. K. ;
Hakimi, N. .
INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2013, 20 (08) :779-787
[58]   Plastic deformation behavior of the friction stir welded AA2024 aluminum alloy [J].
Zhang, Peng ;
Guo, Ning ;
Chen, Gang ;
Meng, Qiang ;
Dong, Chunlin ;
Zhou, Li ;
Feng, Jicai .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 74 (5-8) :673-679
[59]  
Zhu XK, 2004, J MATER PROCESS TECH, V146, P263, DOI [10.1016/j.jmatprotec.2003.10.025, 10.1016/j.matprotec.2003.10.025]
[60]   A Finite Element Model to Simulate Defect Formation during Friction Stir Welding [J].
Zhu, Zhi ;
Wang, Min ;
Zhang, Huijie ;
Zhang, Xiao ;
Yu, Tao ;
Wu, Zhenqiang .
METALS, 2017, 7 (07)