Friction stir welding of AA2024-T3: development of numerical simulation considering thermal history and heat generation

被引:7
作者
Amini, Cyrus [1 ]
Hasanifard, Soran [1 ]
Zehsaz, Mohammad [1 ]
Jerez-Mesa, Ramon [2 ]
Antonio Travieso-Rodriguez, J. [2 ]
机构
[1] Univ Tabriz, Mech Engn Dept, 29 Bahman Blvd, Tabriz 5166616471, Iran
[2] Univ Politecn Cataluna, Mech Engn Dept, Escola Engn Barcelona Est, Caner Eduard Maristany 10-12, Barcelona 1012, Spain
关键词
Temperature-dependent friction; Friction stir welding; Frictional heat generated; MECHANICAL-PROPERTIES; TEMPERATURE DISTRIBUTION; PROCESS PARAMETERS; MODEL; MICROSTRUCTURE; PREDICTION; BEHAVIOR; ENERGY; FLOW;
D O I
10.1007/s00170-021-07184-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a finite element model implemented in ANSYS using Lagrangian formulation to assess heat generation and friction dynamics of a friction stir welding process on AA2024-T3 aluminum plates. For that aim, the model is enriched by estimating a temperature-dependent friction coefficient using theoretical relationships, and by considering a temperature-dependent multilinear isotropic hardening equation as a plasticity model representing the material. Both quantitative determinations are confirmed through experimental data collected on the real material. Finally, the contact conditions are modeled using the modified Coulomb criterion. The results of the model are in agreement with actual results observed on experimental applications. The study proves that the rotational speed of the tool is the most determinant factor in the results. As it rises, the friction-generated heat flow is higher. This study shows that the compressive stress-strain data in strain rate of 10s(-1) is a good approximation of the plasticity behavior of aluminum alloy during the friction stir welding.
引用
收藏
页码:2481 / 2500
页数:20
相关论文
共 60 条
  • [1] Friction stir vibration processing: a new method to improve the microstructure and mechanical properties of Al5052/SiC surface nanocomposite layer
    Abbasi, M.
    Givi, M.
    Ramazani, A.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 100 (5-8) : 1463 - 1473
  • [2] Experimental investigation of tensile strength of friction stir welded butt joints on PMMA
    Adibeig, Mohammad Reza
    Hassanifard, Soran
    Vakili-Tahami, Farid
    Hattel, Jesper Henri
    [J]. MATERIALS TODAY COMMUNICATIONS, 2018, 17 : 238 - 245
  • [3] Computational Modeling and Sub-Grid Scale Stabilization of Incompressibility and Convection in the Numerical Simulation of Friction Stir Welding Processes
    Agelet de Saracibar, C.
    Chiumenti, M.
    Cervera, M.
    Dialami, N.
    Seret, A.
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2014, 21 (01) : 3 - 37
  • [4] APDL, ANSYS MECH
  • [5] Strains and strain rates during friction stir welding
    Arora, A.
    Zhang, Z.
    De, A.
    DebRoy, T.
    [J]. SCRIPTA MATERIALIA, 2009, 61 (09) : 863 - 866
  • [6] A Fully Coupled Thermomechanical Model of Friction Stir Welding (FSW) and Numerical Studies on Process Parameters of Lightweight Aluminum Alloy Joints
    Aziz, Saad B.
    Dewan, Mohammad W.
    Huggett, Daniel J.
    Wahab, Muhammad A.
    Okeil, Ayman M.
    Liao, T. Warren
    [J]. ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2018, 31 (01) : 1 - 18
  • [7] Barron RF, 2011, DESIGN THERMAL STRES, DOI [10.1002/9781118093184.app3, DOI 10.1002/9781118093184.APP3]
  • [8] Steady state thermomechanical modelling of friction stir welding
    Bastier, A.
    Maitournam, M. H.
    Van, K. Dang
    Roger, F.
    [J]. SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2006, 11 (03) : 278 - 288
  • [9] Bussetta P., 2015, Adv Mater Process Technol, V1, P275
  • [10] Influence of Process Parameters on Microstructure and Mechanical Properties in AA2024-T3 Friction Stir Welding
    Carlone P.
    Palazzo G.S.
    [J]. Metallography, Microstructure, and Analysis, 2013, 2 (4) : 213 - 222