Generalized self-dual Chern-Simons vortices

被引:53
作者
Bazeia, D. [1 ]
da Hora, E. [1 ]
dos Santos, C. [2 ,3 ,4 ]
Menezes, R. [2 ,3 ,5 ]
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Univ Porto, Fac Ciencias, Ctr Fis, P-4169007 Oporto, Portugal
[3] Univ Porto, Fac Ciencias, Dept Fis, P-4169007 Oporto, Portugal
[4] Univ Santiago de Compostela, Dept Fis, Santiago De Compostela 15782, Spain
[5] Univ Fed Paraiba, Dept Ciencias Exatas, BR-58297000 Rio Tinto, Paraiba, Brazil
来源
PHYSICAL REVIEW D | 2010年 / 81卷 / 12期
关键词
SOLITON-SOLUTIONS; MODELS;
D O I
10.1103/PhysRevD.81.125014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We search for vortices in a generalized Abelian Chern-Simons model with a nonstandard kinetic term. We illustrate our results, plotting and comparing several features of the vortex solution of the generalized model with those of the vortex solution found in the standard Chern-Simons model.
引用
收藏
页数:7
相关论文
共 42 条
[1]   K fields, compactons and thick branes [J].
Adam, C. ;
Grandi, N. ;
Sanchez-Guillen, J. ;
Wereszczynski, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (21)
[2]   K-defects as compactons [J].
Adam, C. ;
Sanchez-Guillen, J. ;
Wereszczynski, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (45) :13625-13643
[3]   Investigation of the Nicole model [J].
Adam, C. ;
Sanchez-Guillen, J. ;
Vazquez, R. A. ;
Wereszczynski, A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (05)
[4]   Compact gauge K vortices [J].
Adam, C. ;
Klimas, P. ;
Sanchez-Guillen, J. ;
Wereszczynski, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (13)
[5]   Compact self-gravitating solutions of quartic (K) fields in brane cosmology [J].
Adam, C. ;
Grandi, N. ;
Klimas, P. ;
Sanchez-Guillen, J. ;
Wereszczynski, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (37)
[6]  
ADAM C, ARXIV09080218
[7]  
ADAM C, 2009, J PHYS A, V42, P44032
[8]  
ADAM C, 2009, J PHYS A, V42
[9]   Exact static soliton solutions of (3+1)-dimensional integrable theory with nonzero Hopf numbers [J].
Aratyn, H ;
Ferreira, LA ;
Zimerman, AH .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1723-1726
[10]  
Armendariz-Picon C, 2001, PHYS REV D, V63, DOI 10.1103/PhysRevD.63.103510