Laws of the iterated logarithm for the local U-statistic process

被引:27
作者
Gine, Evarist
Mason, David M.
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Delaware, Newark, DE 19717 USA
基金
美国国家科学基金会;
关键词
U-statistics; law of iterated logarithm; empirical process; kernel density estimation; SMOOTHED EMPIRICAL PROCESSES; LIMIT-THEOREMS; UNIFORM CONSISTENCY; FUNCTION ESTIMATORS; DENSITY ESTIMATORS; WEAK-CONVERGENCE; RANDOM-VARIABLES;
D O I
10.1007/s10959-007-0067-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Laws of the iterated logarithm are established for the local U-statistic process. This entails the development of probability inequalities and moment bounds for U-processes that should be of separate interest. The local U-statistic process is based upon an estimator of the density of a function of several i.i.d. variables proposed by Frees (J. Am. Stat. Assoc. 89, 517-525, 1994). As a consequence, our results are directly applicable to the derivation of exact rates of uniform in bandwidth consistency in the sup and in the L-p norms for these estimators.
引用
收藏
页码:457 / 485
页数:29
相关论文
共 30 条
[1]  
[Anonymous], 1999, CAMBRIDGE STUDIES AD
[2]   MARTINGALE CENTRAL LIMIT THEOREMS [J].
BROWN, BM .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01) :59-&
[3]  
De La Pena V. H., 1999, Decoupling:From Dependence To Independence (Probability and Its Applications)
[4]  
Deheuvels P, 2000, PROG PROBAB, V47, P183
[5]   FUNCTIONAL LAWS OF THE ITERATED LOGARITHM FOR LOCAL EMPIRICAL PROCESSES INDEXED BY SETS [J].
DEHEUVELS, P ;
MASON, DM .
ANNALS OF PROBABILITY, 1994, 22 (03) :1619-1661
[6]  
Deheuvels P., 2004, STAT INFER STOCH PRO, V7, P225, DOI DOI 10.1023/B:SISP.0000049092.55534.AF
[7]  
Devroye L., 1985, Nonparametric Density Estimation: The L1 View
[8]  
Dunford N., 1966, Linear operators, Part I, Vthird
[9]   Uniform in bandwidth consistency of kernel-type function estimators [J].
Einmahl, U ;
Mason, DM .
ANNALS OF STATISTICS, 2005, 33 (03) :1380-1403
[10]   Gaussian approximation of local empirical processes indexed by functions [J].
Einmahl, U ;
Mason, DM .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 107 (03) :283-311