Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters

被引:106
作者
Miura, R. [1 ]
Imamura, S. [1 ]
Ohta, R. [2 ]
Ishii, A. [1 ]
Liu, X. [1 ]
Shimada, T. [1 ]
Iwamoto, S. [2 ]
Arakawa, Y. [2 ]
Kato, Y. K. [1 ]
机构
[1] Univ Tokyo, Inst Engn Innovat, Tokyo 1138656, Japan
[2] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
关键词
SPONTANEOUS EMISSION; QUANTUM-DOT; MICROCAVITY; EXCITONS; NANOCAVITY; DRIVEN; LASERS; SCALE;
D O I
10.1038/ncomms6580
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The unique emission properties of single-walled carbon nanotubes are attractive for achieving increased functionality in integrated photonics. In addition to being room-temperature telecom-band emitters that can be directly grown on silicon, they are ideal for coupling to nanoscale photonic structures. Here we report on high-efficiency coupling of individual air-suspended carbon nanotubes to silicon photonic crystal nanobeam cavities. Photoluminescence images of dielectric-and air-mode cavities reflect their distinctly different mode profiles and show that fields in the air are important for coupling. We find that the air-mode cavities couple more efficiently, and estimated spontaneous emission coupling factors reach a value as high as 0.85. Our results demonstrate advantages of ultralow mode-volumes in air-mode cavities for coupling to low-dimensional nanoscale emitters.
引用
收藏
页数:5
相关论文
共 32 条
[1]  
Barkelid M, 2014, NAT PHOTONICS, V8, P48, DOI [10.1038/NPHOTON.2013.311, 10.1038/nphoton.2013.311]
[2]   A picogram- and nanometre-scale photonic-crystal optomechanical cavity [J].
Eichenfield, Matt ;
Camacho, Ryan ;
Chan, Jasper ;
Vahala, Kerry J. ;
Painter, Oskar .
NATURE, 2009, 459 (7246) :550-U79
[3]   Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices [J].
Fujiwara, M. ;
Tsuya, D. ;
Maki, H. .
APPLIED PHYSICS LETTERS, 2013, 103 (14)
[4]   Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes [J].
Gabor, Nathaniel M. ;
Zhong, Zhaohui ;
Bosnick, Ken ;
Park, Jiwoong ;
McEuen, Paul L. .
SCIENCE, 2009, 325 (5946) :1367-1371
[5]   Strong Enhancement of Light-Matter Interaction in Graphene Coupled to a Photonic Crystal Nanocavity [J].
Gan, Xuetao ;
Mak, Kin Fai ;
Gao, Yuanda ;
You, Yumeng ;
Hatami, Fariba ;
Hone, James ;
Heinz, Tony F. ;
Englund, Dirk .
NANO LETTERS, 2012, 12 (11) :5626-5631
[6]   Optical microcavity with semiconducting single-wall carbon nanotubes [J].
Gaufres, Etienne ;
Izard, Nicolas ;
Le Roux, Xavier ;
Kazaoui, Said ;
Marris-Morini, Delphine ;
Cassan, Eric ;
Vivien, Laurent .
OPTICS EXPRESS, 2010, 18 (06) :5740-5745
[7]   Nanobeam photonic crystal cavity quantum dot laser [J].
Gong, Yiyang ;
Ellis, Bryan ;
Shambat, Gary ;
Sarmiento, Tomas ;
Harris, James S. ;
Vuckovic, Jelena .
OPTICS EXPRESS, 2010, 18 (09) :8781-8789
[8]   Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond [J].
Hausmann, B. J. M. ;
Shields, B. J. ;
Quan, Q. ;
Chu, Y. ;
de Leon, N. P. ;
Evans, R. ;
Burek, M. J. ;
Zibrov, A. S. ;
Markham, M. ;
Twitchen, D. J. ;
Park, H. ;
Lukin, M. D. ;
Loncar, M. .
NANO LETTERS, 2013, 13 (12) :5791-5796
[9]  
Hofmann MS, 2013, NAT NANOTECHNOL, V8, P502, DOI [10.1038/nnano.2013.119, 10.1038/NNANO.2013.119]
[10]   Optical control of individual carbon nanotube light emitters by spectral double resonance in silicon microdisk resonators [J].
Imamura, S. ;
Watahiki, R. ;
Miura, R. ;
Shimada, T. ;
Kato, Y. K. .
APPLIED PHYSICS LETTERS, 2013, 102 (16)