Densification, Tailored Microstructure, and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Alloy via Annealing Heat Treatment

被引:28
作者
Wang, Di [1 ]
Wang, Han [1 ]
Chen, Xiaojun [1 ]
Liu, Yang [2 ]
Lu, Dong [3 ,4 ]
Liu, Xinyu [3 ,4 ]
Han, Changjun [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510641, Peoples R China
[2] Ningbo Univ, Lab Impact & Safety Engn, Minist Educ, Ningbo 315211, Peoples R China
[3] Pangang Grp Res Inst Co Ltd, State Key Lab Vanadium & Titanium Resources Compr, Panzhihua 617000, Peoples R China
[4] Chengdu Adv Met Mat Ind Technol Res Inst Co Ltd, Sichuan Adv Met Mat Addit Mfg Engn Technol Res Ct, Chengdu 610300, Peoples R China
关键词
additive manufacturing; selective laser melting; laser powder bed fusion; Ti-6Al-4V; heat treatment; annealing; PROCESS PARAMETERS; PROCESSING PARAMETERS; SURFACE QUALITY; EVOLUTION; TENSILE; BEHAVIOR; SLM; OPTIMIZATION; IMPROVEMENT; MARTENSITE;
D O I
10.3390/mi13020331
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work investigated the influence of process parameters on the densification, microstructure, and mechanical properties of a Ti-6Al-4V alloy printed by selective laser melting (SLM), followed by annealing heat treatment. In particular, the evolution mechanisms of the microstructure and mechanical properties of the printed alloy with respect to the annealing temperature near the beta phase transition temperature were investigated. The process parameter optimization of SLM can lead to the densification of the printed Ti-6Al-4V alloy with a relative density of 99.51%, accompanied by an ultimate tensile strength of 1204 MPa and elongation of 7.8%. The results show that the microstructure can be tailored by altering the scanning speed and annealing temperature. The SLM-printed Ti-6Al-4V alloy contains epitaxial growth beta columnar grains and internal acicular martensitic alpha ' grains, and the width of the beta columnar grain decreases with an increase in the scanning speed. Comparatively, the printed alloy after annealing in the range of 750-1050 degrees C obtains the microstructure consisting of alpha + beta dual phases. In particular, network and Widmanstatten structures are formed at the annealing temperatures of 850 degrees C and 1050 degrees C, respectively. The maximum elongation of 14% can be achieved at the annealing temperature of 950 degrees C, which was 79% higher than that of as-printed samples. Meanwhile, an ultimate tensile strength larger than 1000 MPa can be maintained, which still meets the application requirements of the forged Ti-6Al-4V alloy.
引用
收藏
页数:15
相关论文
共 43 条
[1]   Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting [J].
Bartolomeu, F. ;
Buciumeanu, M. ;
Pinto, E. ;
Alves, N. ;
Silva, F. S. ;
Carvalho, O. ;
Miranda, G. .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2017, 27 (04) :829-838
[2]   Crack propagation and fracture toughness of Ti6A14V alloy produced by selective laser melting [J].
Cain, V ;
Thijs, L. ;
Van Humbeeck, J. ;
Van Hooreweder, B. ;
Knutsen, R. .
ADDITIVE MANUFACTURING, 2015, 5 :68-76
[3]   Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder [J].
Dai, Donghua ;
Gu, Dongdong .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2015, 88 :95-107
[4]   The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting [J].
Do, Dang Khoa ;
Li, Peifeng .
VIRTUAL AND PHYSICAL PROTOTYPING, 2016, 11 (01) :41-47
[5]   Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium [J].
Gu, Dongdong ;
Hagedorn, Yves-Christian ;
Meiners, Wilhelm ;
Meng, Guangbin ;
Batista, Rui Joao Santos ;
Wissenbach, Konrad ;
Poprawe, Reinhart .
ACTA MATERIALIA, 2012, 60 (09) :3849-3860
[6]   Recent Advances on High-Entropy Alloys for 3D Printing [J].
Han, Changjun ;
Fang, Qihong ;
Shi, Yusheng ;
Tor, Shu Beng ;
Chua, Chee Kai ;
Zhou, Kun .
ADVANCED MATERIALS, 2020, 32 (26)
[7]   Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants [J].
Han, Changjun ;
Li, Yan ;
Wang, Qian ;
Wen, Shifeng ;
Wei, Qingsong ;
Yan, Chunze ;
Hao, Liang ;
Liu, Jie ;
Shi, Yusheng .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2018, 80 :119-127
[8]   Specific heat treatment of selective laser melted Ti-6Al-4V for biomedical applications [J].
Huang, Qianli ;
Liu, Xujie ;
Yang, Xing ;
Zhang, Ranran ;
Shen, Zhijian ;
Feng, Qingling .
FRONTIERS OF MATERIALS SCIENCE, 2015, 9 (04) :373-381
[9]   Selective Laser Melting of Ti-6Al-4V: The Impact of Post-processing on the Tensile, Fatigue and Biological Properties for Medical Implant Applications [J].
Jamshidi, Parastoo ;
Aristizabal, Miren ;
Kong, Weihuan ;
Villapun, Victor ;
Cox, Sophie C. ;
Grover, Liam M. ;
Attallah, Moataz M. .
MATERIALS, 2020, 13 (12) :1-16
[10]   Evaluation on Tensile and Fatigue Crack Growth Performances of Ti6A14V Alloy Produced by Selective Laser Melting [J].
Jiao, Z. H. ;
Xu, R. D. ;
Yu, H. C. ;
Wu, X. R. .
3RD INTERNATIONAL SYMPOSIUM ON FATIGUE DESIGN AND MATERIAL DEFECTS (FDMD 2017), 2017, 7 :124-132