A brief guide to machine learning for antibiotic discovery br

被引:14
作者
Liu, Gary [1 ,2 ,3 ]
Stokes, Jonathan M. [1 ,2 ,3 ]
机构
[1] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON, Canada
[2] McMaster Univ, Michael G DeGroote Inst Infect Dis Res, Hamilton, ON, Canada
[3] McMaster Univ, David Braley Ctr Antibiot Discovery, Hamilton, ON, Canada
关键词
DRUG DISCOVERY; CHEMISTRY;
D O I
10.1016/j.mib.2022.102190
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Rising antibiotic resistance and an alarmingly lean antibiotic pipeline require the adoption of novel approaches to rapidly discover new structural and functional classes of antibiotics. Excitingly, algorithmic approaches to antibiotic discovery are sufficiently advanced to meaningfully influence the antibiotic discovery process. Indeed, once trained on high-quality datasets, contemporary machine-learning and deep-learning models can be used to perform predictions for new antibiotics across vast chemical spaces, orders of magnitude more rapidly than compounds can be screened in the laboratory. This increases the probability of discovering new antibiotics with desirable properties. In this short review, we briefly describe the utility of contemporary machine-learning and deep-learning approaches to guide the discovery of new small-molecule antibiotics and unidentified natural products. We then propose a call to action for more open sharing of high-quality screening datasets to accelerate the rate at which forthcoming antibioticprediction models can be trained. Together, we aim to introduce antibiotic discoverers to a sample of recent applications of contemporary algorithmic methods to facilitate the wider adoption of these powerful computational approaches.
引用
收藏
页数:6
相关论文
共 47 条
[21]   Discovering new DNA gyrase inhibitors using machine learning approaches [J].
Li, Long ;
Le, Xiu ;
Wang, Ling ;
Gu, Qiong ;
Zhou, Huihao ;
Xu, Jun .
RSC ADVANCES, 2015, 5 (128) :105600-105608
[22]   Phage-Antibiotic Synergy Is Driven by a Unique Combination of Antibacterial Mechanism of Action and Stoichiometry [J].
Liu, Carmen Gu ;
Green, Sabrina, I ;
Min, Lorna ;
Clark, Justin R. ;
Salazar, Keiko C. ;
Terwilliger, Austen L. ;
Kaplan, Heidi B. ;
Trautner, Barbara W. ;
Ramig, Robert F. ;
Maresso, Anthony W. .
MBIO, 2020, 11 (04) :1-19
[23]   Combinatorial chemistry in drug discovery [J].
Liu, Ruiwu ;
Li, Xiaocen ;
Lam, Kit S. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2017, 38 :117-126
[24]   New developments in RiPP discovery, enzymology and engineering [J].
Montalban-Lopez, Manuel ;
Scott, Thomas A. ;
Ramesh, Sangeetha ;
Rahman, Imran R. ;
van Heel, Auke J. ;
Viel, Jakob H. ;
Bandarian, Vahe ;
Dittmann, Elke ;
Genilloud, Olga ;
Goto, Yuki ;
Grande Burgos, Maria Jose ;
Hill, Colin ;
Kim, Seokhee ;
Koehnke, Jesko ;
Latham, John A. ;
Link, A. James ;
Martinez, Beatriz ;
Nair, Satish K. ;
Nicolet, Yvain ;
Rebuffat, Sylvie ;
Sahl, Hans-Georg ;
Sareen, Dipti ;
Schmidt, Eric W. ;
Schmitt, Lutz ;
Severinov, Konstantin ;
Suessmuth, Roderich D. ;
Truman, Andrew W. ;
Wang, Huan ;
Weng, Jing-Ke ;
van Wezel, Gilles P. ;
Zhang, Qi ;
Zhong, Jin ;
Piel, Joern ;
Mitchell, Douglas A. ;
Kuipers, Oscar P. ;
van der Donk, Wilfred A. .
NATURAL PRODUCT REPORTS, 2021, 38 (01) :130-239
[25]   Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis [J].
Murray, Christopher J. L. ;
Ikuta, Kevin Shunji ;
Sharara, Fablina ;
Swetschinski, Lucien ;
Aguilar, Gisela Robles ;
Gray, Authia ;
Han, Chieh ;
Bisignano, Catherine ;
Rao, Puja ;
Wool, Eve ;
Johnson, Sarah C. ;
Browne, Annie J. ;
Chipeta, Michael Give ;
Fell, Frederick ;
Hackett, Sean ;
Haines-Woodhouse, Georgina ;
Hamadani, Bahar H. Kashef ;
Kumaran, Emmanuelle A. P. ;
McManigal, Barney ;
Agarwal, Ramesh ;
Akech, Samuel ;
Albertson, Samuel ;
Amuasi, John ;
Andrews, Jason ;
Aravkin, Aleskandr ;
Ashley, Elizabeth ;
Bailey, Freddie ;
Baker, Stephen ;
Basnyat, Buddha ;
Bekker, Adrie ;
Bender, Rose ;
Bethou, Adhisivam ;
Bielicki, Julia ;
Boonkasidecha, Suppawat ;
Bukosia, James ;
Carvalheiro, Cristina ;
Castaneda-Orjuela, Carlos ;
Chansamouth, Vilada ;
Chaurasia, Suman ;
Chiurchiu, Sara ;
Chowdhury, Fazle ;
Cook, Aislinn J. ;
Cooper, Ben ;
Cressey, Tim R. ;
Criollo-Mora, Elia ;
Cunningham, Matthew ;
Darboe, Saffiatou ;
Day, Nicholas P. J. ;
De Luca, Maia ;
Dokova, Klara .
LANCET, 2022, 399 (10325) :629-655
[26]   Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization [J].
Nigsch, Florian ;
Bender, Andreas ;
van Buuren, Bernd ;
Tissen, Jos ;
Nigsch, Eduard ;
Mitchell, John B. O. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (06) :2412-2422
[27]  
O'Neill J., 2014, Review on antimicrobial resistance:Tackling a crisis for the health and wealth ofnations
[28]   Evolving medicinal chemistry strategies in antibiotic discovery [J].
Pawlowski, Andrew C. ;
Johnson, Jarrod W. ;
Wright, Gerard D. .
CURRENT OPINION IN BIOTECHNOLOGY, 2016, 42 :108-117
[29]   The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability [J].
Prihoda, David ;
Maritz, Julia M. ;
Klempir, Ondrej ;
Dzamba, David ;
Woelk, Christopher H. ;
Hazuda, Daria J. ;
Bitton, Danny A. ;
Hannigan, Geoffrey D. .
NATURAL PRODUCT REPORTS, 2021, 38 (06) :1100-1108
[30]   Computational Tools for Discovering and Engineering Natural Product Biosynthetic Pathways [J].
Ren, Hengqian ;
Shi, Chengyou ;
Zhao, Huimin .
ISCIENCE, 2020, 23 (01)