A brief guide to machine learning for antibiotic discovery br

被引:14
作者
Liu, Gary [1 ,2 ,3 ]
Stokes, Jonathan M. [1 ,2 ,3 ]
机构
[1] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON, Canada
[2] McMaster Univ, Michael G DeGroote Inst Infect Dis Res, Hamilton, ON, Canada
[3] McMaster Univ, David Braley Ctr Antibiot Discovery, Hamilton, ON, Canada
关键词
DRUG DISCOVERY; CHEMISTRY;
D O I
10.1016/j.mib.2022.102190
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Rising antibiotic resistance and an alarmingly lean antibiotic pipeline require the adoption of novel approaches to rapidly discover new structural and functional classes of antibiotics. Excitingly, algorithmic approaches to antibiotic discovery are sufficiently advanced to meaningfully influence the antibiotic discovery process. Indeed, once trained on high-quality datasets, contemporary machine-learning and deep-learning models can be used to perform predictions for new antibiotics across vast chemical spaces, orders of magnitude more rapidly than compounds can be screened in the laboratory. This increases the probability of discovering new antibiotics with desirable properties. In this short review, we briefly describe the utility of contemporary machine-learning and deep-learning approaches to guide the discovery of new small-molecule antibiotics and unidentified natural products. We then propose a call to action for more open sharing of high-quality screening datasets to accelerate the rate at which forthcoming antibioticprediction models can be trained. Together, we aim to introduce antibiotic discoverers to a sample of recent applications of contemporary algorithmic methods to facilitate the wider adoption of these powerful computational approaches.
引用
收藏
页数:6
相关论文
共 47 条
[1]   Efficient Machine Learning for Big Data: A Review [J].
Al-Jarrah, Omar Y. ;
Yoo, Paul D. ;
Muhaidat, Sami ;
Karagiannidis, George K. ;
Taha, Kamal .
BIG DATA RESEARCH, 2015, 2 (03) :87-93
[2]   Helping Chemists Discover New Antibiotics [J].
Blaskovich, Mark A. T. ;
Zuegg, Johannes ;
Elliott, Alysha G. ;
Cooper, Matthew A. .
ACS INFECTIOUS DISEASES, 2015, 1 (07) :285-287
[3]   Trends and Exceptions of Physical Properties on Antibacterial Activity for Gram-Positive and Gram-Negative Pathogens [J].
Brown, Dean G. ;
May-Dracka, Tricia L. ;
Gagnon, Moriah M. ;
Tommasi, Ruben .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (23) :10144-10161
[4]   Antibacterial drug discovery in the resistance era [J].
Brown, Eric D. ;
Wright, Gerard D. .
NATURE, 2016, 529 (7586) :336-343
[5]   QSAR Modeling: Where Have You Been? Where Are You Going To? [J].
Cherkasov, Artem ;
Muratov, Eugene N. ;
Fourches, Denis ;
Varnek, Alexandre ;
Baskin, Igor I. ;
Cronin, Mark ;
Dearden, John ;
Gramatica, Paola ;
Martin, Yvonne C. ;
Todeschini, Roberto ;
Consonni, Viviana ;
Kuz'min, Victor E. ;
Cramer, Richard ;
Benigni, Romualdo ;
Yang, Chihae ;
Rathman, James ;
Terfloth, Lothar ;
Gasteiger, Johann ;
Richard, Ann ;
Tropsha, Alexander .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (12) :4977-5010
[6]   Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters [J].
Cimermancic, Peter ;
Medema, Marnix H. ;
Claesen, Jan ;
Kurita, Kenji ;
Brown, Laura C. Wieland ;
Mavrommatis, Konstantinos ;
Pati, Amrita ;
Godfrey, Paul A. ;
Koehrsen, Michael ;
Clardy, Jon ;
Birren, Bruce W. ;
Takano, Eriko ;
Sali, Andrej ;
Linington, Roger G. ;
Fischbach, Michael A. .
CELL, 2014, 158 (02) :412-421
[7]   The Drug Repurposing Hub: a next-generation drug library and information resource [J].
Corsello, Steven M. ;
Bittker, Joshua A. ;
Liu, Zihan ;
Gould, Joshua ;
McCarren, Patrick ;
Hirschman, Jodi E. ;
Johnston, Stephen E. ;
Vrcic, Anita ;
Wong, Bang ;
Khan, Mariya ;
Asiedu, Jacob ;
Narayan, Rajiv ;
Mader, Christopher C. ;
Subramanian, Aravind ;
Golub, Todd R. .
NATURE MEDICINE, 2017, 23 (04) :405-+
[8]   A Common Platform for Antibiotic Dereplication and Adjuvant Discovery [J].
Cox, Georgina ;
Sieron, Arthur ;
King, Andrew M. ;
De Pascale, Gianfranco ;
Pawlowski, Andrew C. ;
Koteva, Kalinka ;
Wright, Gerard D. .
CELL CHEMICAL BIOLOGY, 2017, 24 (01) :98-109
[9]   Global Awakening of Cryptic Biosynthetic Gene Clusters in Burkholderia thailandensis [J].
Gupta, Ashish ;
Bedre, Renesh ;
Thapa, Sudarshan Singh ;
Sabrin, Afsana ;
Wang, Guannan ;
Dassanayake, Maheshi ;
Grove, Anne .
ACS CHEMICAL BIOLOGY, 2017, 12 (12) :3012-3021
[10]   A deep learning genome-mining strategy for biosynthetic gene cluster prediction [J].
Hannigan, Geoffrey D. ;
Prihoda, David ;
Palicka, Andrej ;
Soukup, Jindrich ;
Klempir, Ondrej ;
Rampula, Lena ;
Durcak, Jindrich ;
Wurst, Michael ;
Kotowski, Jakub ;
Chang, Dan ;
Wang, Rurun ;
Piizzi, Grazia ;
Temesi, Gergely ;
Hazuda, Daria J. ;
Woelk, Christopher H. ;
Bitton, Danny A. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (18)