Big Data in Nephrology

被引:8
作者
Kaur, Navchetan [1 ,2 ]
Bhattacharya, Sanchita [1 ,2 ]
Butte, Atul J. [1 ,2 ,3 ]
机构
[1] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94143 USA
[3] Univ Calif Hlth, Ctr Data Driven Insights & Innovat, Oakland, CA 94607 USA
基金
美国国家卫生研究院;
关键词
CHRONIC KIDNEY-DISEASE; ELECTRONIC HEALTH RECORDS; ONLINE MENDELIAN INHERITANCE; CLINICAL-TRIALS; ARTIFICIAL-INTELLIGENCE; MOBILE DEVICES; OPEN ACCESS; DATABASES; DIALYSIS; GENES;
D O I
10.1038/s41581-021-00439-x
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
A huge array of data in nephrology is collected through patient registries, large epidemiological studies, electronic health records, administrative claims, clinical trial repositories, mobile health devices and molecular databases. Application of these big data, particularly using machine-learning algorithms, provides a unique opportunity to obtain novel insights into kidney diseases, facilitate personalized medicine and improve patient care. Efforts to make large volumes of data freely accessible to the scientific community, increased awareness of the importance of data sharing and the availability of advanced computing algorithms will facilitate the use of big data in nephrology. However, challenges exist in accessing, harmonizing and integrating datasets in different formats from disparate sources, improving data quality and ensuring that data are secure and the rights and privacy of patients and research participants are protected. In addition, the optimism for data-driven breakthroughs in medicine is tempered by scepticism about the accuracy of calibration and prediction from in silico techniques. Machine-learning algorithms designed to study kidney health and diseases must be able to handle the nuances of this specialty, must adapt as medical practice continually evolves, and must have global and prospective applicability for external and future datasets. Application of big data in nephrology could lead to new insights into kidney diseases, facilitate personalized medicine and improve patient care. This Review discusses the major sources of big data in nephrology and how they could be utilized in research and clinical practice.
引用
收藏
页码:676 / 687
页数:12
相关论文
共 142 条
[1]   EHR-Based Clinical Trials The Next Generation of Evidence [J].
Abdel-Kader, Khaled ;
Jhamb, Manisha .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2020, 15 (07) :1050-1052
[2]  
Adibuzzaman Mohammad, 2017, AMIA Annu Symp Proc, V2017, P384
[3]   Leveraging the Capabilities of the FDA's Sentinel System To Improve Kidney Care [J].
Adimadhyam, Sruthi ;
Barreto, Erin F. ;
Cocoros, Noelle M. ;
Toh, Sengwee ;
Brown, Jeffrey S. ;
Maro, Judith C. ;
Corrigan-Curay, Jacqueline ;
Dal Pan, Gerald J. ;
Ball, Robert ;
Martin, David ;
Nguyen, Michael ;
Platt, Richard ;
Li, Xiaojuan .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2020, 31 (11) :2506-2516
[4]   Machine Learning to Identify Dialysis Patients at High Death Risk [J].
Akbilgic, Oguz ;
Obi, Yoshitsugu ;
Potukuchi, Praveen K. ;
Karabayir, Ibrahim ;
Nguyen, Danh, V ;
Soohoo, Melissa ;
Streja, Elani ;
Molnar, Miklos Z. ;
Rhee, Connie M. ;
Kalantar-Zadeh, Kamyar ;
Kovesdy, Csaba P. .
KIDNEY INTERNATIONAL REPORTS, 2019, 4 (09) :1219-1229
[5]   Artificial intelligence: A new approach for prescription and monitoring of hemodialysis therapy [J].
Akl, AI ;
Sobh, MA ;
Enab, YM ;
Tattersall, J .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2001, 38 (06) :1277-1283
[6]   The "All of Us" Research Program [J].
Denny J.C. ;
Rutter J.L. ;
Goldstein D.B. ;
Philippakis A. ;
Smoller J.W. ;
Jenkins G. ;
Dishman E. .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (07) :668-676
[7]   Challenges in conducting clinical trials in nephrology: conclusions from a Kidney Disease-Improving Global Outcomes (KDIGO) Controversies Conference [J].
Baigent, Colin ;
Herrington, William G. ;
Coresh, Josef ;
Landray, Martin J. ;
Levin, Adeera ;
Perkovic, Vlado ;
Pfeffer, Marc A. ;
Rossing, Peter ;
Walsh, Michael ;
Wanner, Christoph ;
Wheeler, David C. ;
Winkelmayer, Wolfgang C. ;
McMurray, John J. V. .
KIDNEY INTERNATIONAL, 2017, 92 (02) :297-305
[8]   An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients [J].
Barbieri, Carlo ;
Molina, Manuel ;
Ponce, Pedro ;
Tothova, Monika ;
Cattinelli, Isabella ;
Ion Titapiccolo, Jasmine ;
Mari, Flavio ;
Amato, Claudia ;
Leipold, Frank ;
Wehmeyer, Wolfgang ;
Stuard, Stefano ;
Stopper, Andrea ;
Canaud, Bernard .
KIDNEY INTERNATIONAL, 2016, 90 (02) :422-429
[9]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[10]   ImmPort, toward repurposing of open access immunological assay data for translational and clinical research [J].
Bhattacharya, Sanchita ;
Dunn, Patrick ;
Thomas, Cristel G. ;
Smith, Barry ;
Schaefer, Henry ;
Chen, Jieming ;
Hu, Zicheng ;
Zalocusky, Kelly A. ;
Shankar, Ravi D. ;
Shen-Orr, Shai S. ;
Thomson, Elizabeth ;
Wiser, Jeffrey ;
Butte, Atul J. .
SCIENTIFIC DATA, 2018, 5